
Design of Novel Pseudo-Haptic Techniques for Tablets

Marco Freire

August 23, 2018

Abstract

Haptic feedback grants a more realistic and immersive way of exploring visual media
content despite usually being limited by the lack of fidelity and the bulkiness of the appa-
ratus used for this purpose. Pseudo-haptic techniques allow for a simpler and lower-cost
experience on a more portable device such as a tablet while retaining most of the advan-
tages of previous techniques.

Keywords: pseudo-haptics; haptic sensation; touch device

Reference: Intership done from May 22nd, 2018 to August 3rd, 2018 at the HYBRID team of
Inria Rennes under the supervision of Antoine Costes, Ferran Argelaguet and Anatole
Lécuyer.

Contents

1 Haptic sensations and interaction 1
1.1 Pseudo-haptics . 1
1.2 Touchscreen interaction . 2
1.3 Touchy . 2

2 Contribution: the Encase effect 3
2.1 Concept . 3
2.2 Implementation . 3

2.2.1 Mesh structure . 3
2.2.2 Projection methods . 5
2.2.3 Influence of cursor detail on visual appearance 7
2.2.4 Touchscreen specifics . 8
2.2.5 Demo application . 9

3 Discussion and future work 12
3.1 Current issues . 12
3.2 Current optimisations . 14
3.3 Future work . 15

4 Conclusion 15

1

Introduction

Data representation mostly relies on visual means nowadays. People are used to perceiving
and remembering their environment through visual stimuli, so it is only natural that visual
information is the most used means of communication. But there is many more dimensions
to an object than its physical appearance: people can perceive sound, smell, taste or texture.
In order to recreate faithfully the sensations experienced when in contact with the real world,
which can be very important in the virtual reality domain to enhance user immersion, all of
these channels must be explored.

Among all of these means of transmitting sensory information, haptic feedback is starting
to get more and more attention, on phones and gamepads integrating vibration features for
example. The word haptic designates everything related to the sense of touch and the per-
ception of forces : when a person runs their finger on a surface, a wooden table for example,
they experience haptic feedback that gives them information about the table’s texture, shape,
roughness and many other physical properties.

A variety of devices have been designed to apply forces on the user’s body, such as force-
feedback arms, or to create realistic simulations, such as motion platforms, but this kind of
equipment is often either very expensive or not easily usable or ergonomic and therefore not
accessible to the main consumer. If haptic sensations could be reproduced on simpler and
more widespread devices such as personal computers, tablets or smartphones, it could render
the technology available to everybody, but haptic feedback techniques are barely advanced or
available enough to accurately replicate the feeling of touch on this kind of device.

When perceiving spatial properties, people tend to give more credit to what they see than
to what they feel, so by introducing a discrepancy between these two stimuli, a new coherent
representation of the environment is forged, thus possibly creating a haptic illusion, which
establishes the basis of pseudo-haptics. Pseudo-haptic feedback can then be used to convey
haptic sensations without cumbersome equipment and on simpler devices relying only on the
sensory dominance of vision over touch and the creation of a conflicting visuo-haptic feedback.

The goal of this internship is to design and implement a system based on pseudo-haptic
interaction enabling the haptic exploration of a virtual environment, enhancing the sensations
experienced by the user. This system will rely on a handful of haptic effects per scene conveyed
to the user through the deformation of an on-screen cursor.

In the remainder of this paper, related work in the field of pseudo-haptics and touchscreen
interaction will be presented. Then the different methods and algorithms behind the alter-
ations of the cursor’s state, used to convey haptic sensations, will be explained in detail, lead-
ing to the construction of an application showcasing these methods. Finally the paper will
conclude with a discussion about the work done during the internship and the different re-
search leads it provides.

1 Haptic sensations and interaction

1.1 Pseudo-haptics

Many ways of recreating haptic feedback have been devised such as force-feedback arms that
can accept input movement from the user or apply a force on the user’s hand, motion plat-

1

forms used in advanced flight or driving simulators or much more simple devices such as
vibration-inducing mechanisms in game pads. These devices ease the immersion of the user
in either a simulation or a game, but they can also help enhancing everyday experiences. These
kinds of advanced equipment can be very expensive or cumbersome, making them not very
widespread nor available to everybody.

Pseudo-haptic feedback tries to address these issues by recreating haptic sensations in vir-
tual environments using visual feedback and properties of human visuo-haptic perception.
This technique strongly relies on the sensory dominance of vision over haptic sensations when
dealing with spatial interaction tasks. In order to work, pseudo-haptic feedback introduces
the user to one or more sensory conflicts between visual and haptic information. Faced with
this conflict, the user creates a new and coherent representation of their environment based on
visuo-haptic feedback, potentially different from their actual environment. [4].

Different haptic properties such as friction [6] or stiffness [3] have been simulated success-
fully with this kind of techniques through haptic interfaces.

While the simulations were proven to be effective, external haptic devices are still neces-
sary. In order to get rid of this constraint, other techniques have been developed using only
the computer mouse as an interface. For example, the feeling of a texture was succesfully
recreated by modifying the mouse cursor speed and size on certain regions of the surface [5].
Also, material elasticity was simulated by applying a deformation to the texture on the surface
under the cursor to create the illusion of a force being exerted on it [1].

1.2 Touchscreen interaction

When applying pseudo-haptics to touch devices three issues must be taken into account.
Firstly, cursors and applications have to be designed around hand and finger occlusion: most
of the space under the finger and a part of the screen are obstructed by the hand of the user
and are not visible. Cursors have to be designed around this and be larger or be controlled
remotely from a specific part of the screen, breaking co-localization. Secondly, decoupling
happens when the cursor is not directly tied to the finger and can travel at a different speed.
At the beginning of the movement, the finger and the cursor start moving from the same point,
but they stop at different places at the end of the movement, which can make the illusion fall
apart. Ujitoko et al. circumvented this problem by having a moving background image to sim-
ulate a walk on a snowy terrain [7], but less research has been conducted in the co-localized
scenario. Finally, input latency can be noticed on touch devices and can be disturbing to the
user in some applications. Input latency compensation algorithms usually try to predict where
the user will be touching the screen based on previous touch data [8].

1.3 Touchy

In order to address these first two issues Costes et al. [2] proposed the use of a circular de-
formable cursor following the user’s finger. By means of the alteration of the motion or the
shape of a co-localized cursor, a variety of haptic features such as the shape, roughness or fric-
tion of a texture can be expressed. In the demonstration, the user can see a single texture on
the screen and can feel an individual haptic effect. The effect can be chosen independently
of the displayed texture, but they should remain closely related in order for the illusion to be
effective.

2

2 Contribution: the Encase effect

2.1 Concept

Internship goal The aim of the internship was to extend the approach of Costes et al. to
virtual environments. The main idea is to enable the user to feel a surface or an object on a
touchscreen through pseudo-haptic techniques. The aim of this technology is to enhance user
experience and immersion while remaining portable and inexpensive. This proof of concept
takes the shape of an application for touchscreen devices showcasing different haptic effects,
mainly the encase effect which is the main contribution of this internship.

Encase effect structure The aim of the encase effect is to create an illusion of depth and trans-
mit information about the surface geometry and relief of the zone of the object the user wants
to inspect. This inspection is done through a cursor under the user’s finger. This cursor must
then be able to deform and adapt to the objects’ surface which can be accomplished by using a
cursor mesh. Because the 3D scenes featured in the application consist of 3D models also rep-
resented by meshes, the relief information will depend highly on the meshes’ level of detail,
which must be sufficient to extract accurate data. After surface geometry data is extracted, it
must be transmitted to the cursor which has to be deformed to match the object and placed
accordingly in the scene, where the user wants it to be. All of this has to be done taking into
account the touchscreen device hardware and specifics.

Figure 1: Encase effect

2.2 Implementation

2.2.1 Mesh structure

Three cursor meshes have been implemented, each one having its advantages and its draw-
backs: a simple radial cursor, a hexagon-based cursor and finally an extended radial cursor.
Their detailed structures can be seen in figure 2.

3

(a) Simple radial cursor
50 outer vertices

(b) Hexagonal cursor
5 rings

(c) Extended radial cursor
5 rings, 25 vertices per ring

Figure 2: Different cursor mesh templates

Simple radial cursor The simple radial cursor is the most basic shape possible for the cursor,
with a vertex at its center and every other vertex on a circle with a given radius. The number
of outer vertices can be adjusted to balance precision and performance. While this cursor
performs well due to its elementary structure, the lack of vertices in the inside of the cursor
can lead to loss of visual detail making the surface look flat as can be seen in figure 3.

(a) Simple radial cursor (b) Hexagon-based cursor

Figure 3: Comparison of detail inside the cursor for two different structures

Hexagon-based cursor In order to have a uniform vertex distribution and minimise their
number, the mesh triangles should be as regular as possible. This leads to the creation of
a hexagon-shape structure, where vertices are placed regularly on the contour of concentric
hexagons. Actually the vertices are projected on the circumscribed circles of the hexagonal
rings so that every vertex on a particular ring is at a constant distance from the center of the
cursor. The number of concentric rings is adjustable.

Extended radial cursor The third cursor structure came as a solution to problems found at
a later stage that will be discussed at length in section 3.1. In this cursor, a fixed number of

4

vertices are equally distributed on the circumference of a series of concentric rings. These
vertices are all placed along radii of the cursor. Because of this, the angular density of vertices
in the cursor is adjustable, but the regular density is much higher near the center than on the
border. Both the number of vertices on each ring —which is constant across all rings— and the
number of rings are adjustable.

Cursor appearance Two different cursor appearances were tested: in the first one, the cursor
has a black background to increase contrast with the scene and white rings on the border
increase deformation perception and in the second one the black parts become transparent,
which blends better with the rest of the scene. The influence of the cursor color and texture on
the impact of haptic sensations should be further investigated. The shape is fully symmetrical
to avoid favouring a particular direction and the size takes into account the problem of finger
occlusion presented in section 2.2.4. The comparison between the two cursors can be seen in
figure 4.

(a) Black cursor (b) Transparent cursor

Figure 4: Comparison between two different cursor appearances

2.2.2 Projection methods

The main idea behind the implemented techniques is to project the cursor shape on the scene
surface below it. Two main types of projection were used: a raycast-based projection and a
distance-based projection.

Raycast-based projection This projection relies on placing a reproduction of the cursor tem-
plate on the world point corresponding to the finger position of the screen, with its normal
aligned with the surface normal at this point. Then each cursor vertex is raycasted from the
viewer camera position onto the object surface, the viewer camera being always fixed. This
approach is computationally expensive since a raycast is done for each vertex of the cursor
and each object in the scene requires a complicated mesh collider, the models used consisting
of many vertices and triangles. Moreover the proportions of the cursor are very distorted us-
ing this method, which leads to unrealistic deformations on surfaces parallel to the viewing
perspective.

5

Distance-based projection In order to avoid unbelievable deformations, this projection pre-
serves cursor dimensions in the 3D space. It heavily relies on transformations between screen
coordinates and world coordinates.

This transformation is based on the depth information of the scene, which can be accessed
by rendering the depth buffer of the scene the camera is seeing, on a texture. From this texture,
the distance between the camera and the content of a pixel can be obtained. Then Unity pre-
made functions allow us to convert pixel screen coordinates into world coordinates.

The depth texture of the whole scene is captured at a very high resolution from the user’s
perspective as can be seen in figure 5. This texture encodes depth in a 32-bit floating point
number, the usual 8-bit integer not being precise enough for the screen to world space position
conversion.

Figure 5: Depth texture example

First, the cursor center is placed in the scene. Then, for each vertex in the cursor, the dis-
tance and the normalized direction vector from the center to the vertex are calculated on the
cursor template (see figure 2), the farthest vertices being at a distance of 1 from the center.

Then, starting at the center, steps of a given length are made on the template in the direction
of the current vertex and the distance on the cursor template is translated into world distance.
Once the traveled distance in the scene is greater than the distance between the center and
the considered vertex, the last position before this condition is met, is transferred into world
coordinates and set to be the position of the vertex.

An illustration of this principle can be seen in figure 6.

Comparison The main difference between these approaches is the way information about
the scene geometry is gathered. The former uses the mesh structure of the scene to obtain
this information, since raycasts return a collision point with the mesh collider, while the latter
obtains depth data about the scene used in the rendering process, from which information
on the geometry is extracted by the means of the transformation between screen and world
coordinates.

The maintenance of a mesh collider and the constant raycasting being very demanding
compared to the fetching of the depth texture of the scene, which is only done once at the start

6

Figure 6: Encase principle

of the application, the latter approach is used.

2.2.3 Influence of cursor detail on visual appearance

Both the cursor detail and the step size can be adjusted in order to balance performance and
visual quality. Depending on the cursor template used, detail will increase differently when
changing the cursor parameters as stated in section 2.2.1.

For the simple radial cursor, detail only increases on the circumference of the cursor, effec-
tively making its border look smoother the higher the number of vertices is.

As for the other two cursors, the more vertices there are, the more details of the surface
geometry can be grasped. Figure 7 shows the influence of the step size on the extended radial
cursor with a fixed number of rings and of vertices per ring on a flat surface. The larger the
step size is, the worse the distance approximation made by the projection algorithm is, the
object surface sampling being sparser and the distance increments per step of the algorithm
larger.

In a similar vein, if the number of vertices is not high enough, however small the step size
is, less surface details will be grasped and the cursor will appear irregular, as seen in figure 8.

A balance must then be found between the number of rings and the step size. As the
number of rings increases, the step size should decrease, or else vertices will collapse around
the same points, as can be seen in figure 7 for the two highest step size values.

7

Step: 0.1 Step: 0.05 Step: 0.02 Step: 0.01

Step: 0.005 Step: 0.002 Step: 0.001

Figure 7: Variations of the precision of vertex position depending on texture step size
Extended radial cursor: 8 rings, 64 vertices per ring

2.2.4 Touchscreen specifics

Touchscreen device issues Interacting with a device through an indirect means such as a
computer mouse or a direct means such as a touchscreen is radically different. As stated above,
finger and hand occlusion or decoupling are problems that must be taken into account in the
design of this application.

When the user interacts with the scene, most of the time the cursor will be occluded by
their finger, which requires the cursor to have a minimum size or else the user will not be able
to feel the pseudo-haptic effects that are being transmitted through the cursor.

Another issue to take into account is that most of the time, touchscreen devices have less
computational power than personal computers and in consequence cannot run some applica-
tions, particularly GPU-intensive ones.

The last issue is input latency: all touchscreen devices take a perceivable amount of time
to respond to user input. Since the user should be able to feel what is under their finger at
all times, the cursor should also be under their finger at all times and input latency should be
reduced as much as possible.

Input latency compensation Input latency correction is based on the past positions of the
cursor, which are used to correct its new position. The prediction algorithm was supplied
to me by one of my internship supervisors, Antoine Costes and is inspired by the work of
Ushirobira et al. [8].

A simple linear prediction is applied to the measured touch position f meas:

f pred = f meas + kpred × (f meas − f prev
meas)

8

Cursor visual appearance

Cursor structure

Figure 8: Influence of the number of vertices on cursor visual appearance and structure
Extended radial cursor: left: 5 rings, 25 vertices per ring; right: 15 rings, 100 vertices per
ring

where f prev
meas is the measured touch position at the last frame and kpred the prediction coefficient.

Then an exponential smoothing filter is applied to get the corrected position:

f = α × f pred(1 − α)× f prev
pred

where f prev
pred is the predicted position at the last frame and α the filter parameter. The parameters

were set to kpred = 8 and α = 0.3 after testing.

This algorithm predicts accurately the future position of the cursor when traveling in a
straight line, the prediction being much less accurate when the cursor travels along a curve,
which can be disturbing. These inaccuracies can interfere with some haptic effects, thereby
reducing their effectiveness and impact on the user.

2.2.5 Demo application

Application structure The main structure of the application is the following: at first, user
input is read and touch coordinates are corrected to compensate for input latency and the
cursor is placed according to these coordinates. Then modifications are applied to the cursor to

9

account for the haptic properties of the surface below the cursor. Lastly, the cursor is deformed
to match the surface geometry to give an illusion of shape and depth.

The application is made in Unity which allows an easy manipulation of 3D scenes, comes
with a multitude of useful pre-made utilities and is widely used in virtual reality research or
in the film industry. The scripting is done in C#.

Touchscreen
Compensate input lag
Place cursor in scene

Effects
Modify cursor shape

and position

Splattering
Adapt cursor shape to

object surface

Figure 9: Structure of the application

Effects The goal of the application is to allow the user to feel the different surfaces and objects
in the scenes featured in the application. In order to convey haptic sensations, different haptic
effects were implemented:

• a vibration effect;

• an elastic effect;

• a slippery effect.

To each effect is associated a mask texture that defines in which zone of the scene the effect
will be triggered, an example of a mask texture can be seen in figure 10.

Figure 10: Elastic effect mask texture

Vibration effect This effect tries to recreate the sensations caused by the micro-structure of a
surface. In order to represent visually these vibrations on a given surface, a random offset of
adjustable magnitude is added to the position of the cursor on the screen. This effect triggers
when the cursor speed goes beyond a certain threshold, indeed, if the cursor is too slow and
the effect is applied, its movement seems erratic and unrealistic.

10

Elastic effect This effect tries to recreate the sensations experienced when feeling an elastic
surface by acting on the size of the cursor. When the user touches the screen for the first time,
the cursor shrinks depending on the elasticity of the surface and then grows back to its normal
size when the finger is lifted. The size variation is linear with time. The shrinkage and growing
speeds are adjustable, as well as the final, full shrunk size.

Slippery effect This effect tries to recreate slippery surfaces by making the cursor slide in
certain surfaces of the scene: when the cursor is faster than a certain speed, the user loses con-
trol of it and it keeps on moving on a straight line either until it stops or reaches the boundary
of the slippery zone.

Scenes The choice of the scenes featured in the application was driven by the idea of offering
to the user the possibility to explore an object of a lesser or higher than human scale, providing
a novel experience both through innovative pseudo-haptic techniques and through a scene
standpoint.

Every scene contains at least the model of the object the user will be able to explore, a main
camera from which the image displayed on the device is captured and the cursor traveling on
the surface of the object, subject to different effects.

Each scene was supposed to showcase one or two different haptic effects and the encase
effect. Because of this, the concepts, algorithms and techniques explained in this document
will be illustrated on this scene. An overview of the different scenes can be seen in figure 11.

Due to the lack of time, only the pizza part scene ended up in the final application.

All of the different 3D scenes and models were taken from Sketchfab and include:

• a pizza part;

• a car in an arid landscape;

• a tree stump;

• a fruit and vegetable basket;

• a low-poly earth model;

11

https://sketchfab.com/
https://sketchfab.com/models/7de0fd39416e4910a28fc23d3c887d53
https://sketchfab.com/models/c560920bedc84808a22de4567b27e28a
https://sketchfab.com/models/0bc7b9984d3842f58b3cf4dabcdb95f3
https://sketchfab.com/models/51f604ebf65446309b94780fc4653f34
https://sketchfab.com/models/5665f720773c41198116a3585dfae3af

Figure 11: Different scenes

3 Discussion and future work

3.1 Current issues

Perspective deformation It can be seen in figure 12 that even if the cursor is on a flat surface,
radii in some regions of the cursor are farther apart than in other regions. This is explained
by the angle deformation caused by the perspective projection. When steps are taken on the
cursor template on a given direction, the angle defined by this direction should be corrected
depending on the perspective of the camera. Without this correction, angles on the closest and
most distant sides of the cursor appear larger than they should, and those on the other sides
appear smaller than they really are.

Discontinuity of the cursor border Depending on the placement of the cursor in the scene,
one can see artifacts on the border of the cursor, such as the ones in figure 13. This happens
when the cursor is over a region with substantial depth variations because the distance on the
surface is calculated from the center of the cursor.

In order to fix this, it would be possible to add constraints on the length of the edges of the
cursor, which would be computationally expensive on every cursor template except for the
simplest one, the other ones having too many edges. When using the simple radial cursor, it is
possible to average the magnitude of the vector connecting a given vertex to the center, by av-
eraging it with the magnitudes of the vectors of its neighbouring vertices on the circumference
of the cursor.

This results in a much smoother border at the cost of some extra computation. Unfortu-
nately, some new artifacts appear as can be seen in figure 14, in which a vertex appears right
above another.

12

Figure 12: Angle deformation

Figure 13: Cursor artifacts on height discontinuities

Lack of surface detail with simple radial cursor As we have seen, the simple radial cursor
hardly conveys any detail of the surface underneath, not having any vertex in the inside aside
from the center, as it was shown in figure 3. In order to circumvent this problem, when the
scene is loaded, its normal map is captured and stored. Then the normal map of the scene is
used for lighting the cursor, which gives the illusion that the cursor is actually taking the shape
of the object underneath.

13

Figure 14: Cursor artifacts with neighbour averaging

3.2 Current optimisations

Optimised encase algorithm When the extended radial cursor was not yet implemented and
the application used the hexagon-based one, we realized that the structure was not optimal for
the projection algorithm. Indeed, when n vertices are aligned along a radius of the cursor, the
distance between the center and each vertex is traveled multiple times. Instead, the distance
from the center to the farthest vertex on a radii could be traveled only once, storing for each
vertex the point where the respective world distance was passed. This approach was impossi-
ble for the hexagon-based cursor since vertices are not aligned on the radii, but the extended
radial cursor was created with this optimisation in mind as can be seen in figure 2. Perfor-
mance is much better with this optimisation: for a radius on the extended radial cursor, the
total number of steps needed goes from quadratic to linear in the inverse of the step size with
the new method.

Constant step size It can be noticed that the step size is a constant, a vertex close to the
center of the cursor will require a small number of steps in the projection algorithm. As a
consequence, the variability of its position will be greater relative to the distance from the
center than for a farther vertex. To fix this, the step magnitude could be scaled by the distance
on the cursor template from the center to each vertex. The precision would be then the same for
each vertex, independently of its distance to the origin, but it would highly increase the total
number of steps needed by the algorithm and the performance would plummet. Furthermore,
since the display resolution and the depth texture resolution are finite and limited this detail
would mostly go unnoticed.

Working with an image of the scene Tablets and touchscreen devices have a hard time run-
ning the application, even when using the optimised encase algorithm. This is due to the high
vertex and triangle count of the models used in our scenes, which were rendered on each
frame. Since the camera is static, there is no need to keep rendering the models, so at the start
of the application, a screenshot of the scene is taken and then displayed for the rest of the

14

runtime, which compensates for the lack of GPU power stated in section 2.2.4.

3.3 Future work

Due to the short length of the internship, no time was left to evaluate user experience. This
kind of applications being centered around user experience and the main goal being to im-
prove the expressiveness of the visual medium by adding haptic components to it; most deci-
sions regarding the haptic effects should be reevaluated after user feedback is gathered. What
was accomplished during the internship should act as a basis for a more complete application,
comprising additional effects and taking into account this feedback.

Despite the encase effect being a complete and functional effect, more time should be spent
on improving it visually and finding a solution for the artifacts visible on discontinuous sur-
faces, which remain the main problem of this feature.

Additional effects such as stickyness, temperature or friction can be added to this applica-
tion to improve the range of haptic sensations the user can feel, which is quite limited at the
present moment.

Finally, in order to make the creation of scenes easier and more accessible, the link between
the mask textures and the scenes should be strengthened, these textures being currently crafted
by hand based on the scene they represent.

4 Conclusion

In this paper we present the research process behind the extension of the approach of Costes et
al. to virtual environments, taking the shape of an application allowing the user to feel objects
in a 3D scene displayed on a touchscreen device through pseudo-haptic techniques, developed
during an internship in the HYBRID team at Inria Rennes.

In this application, the user interacts with the scene through a cursor controlled by their
finger which, they can use to explore it. The cursor is affected by different pseudo-haptic
effects depending on the surface it is on. These effects try to convey a sensation as close as
possible as the one felt when touching a real surface of that kind. The implemented effects can
transmit information on the roughness, the slipperiness and the elasticity of the surface, but
also on the global geometry of the object through the encase effect, which was the main focus
during the internship.

The work done during the internship establishes a basis for a future implementation of
more pseudo-haptic effects such as stickiness, temperature or friction and a more diverse col-
lection of scenes. Unfortunately user experience was not properly evaluated, despite being
crucial for making sure that the application is effective. Gathering user feedback is the next
logical step for making this proof of concept into a fleshed-out application. Also, the system
to add effects to each scene should be improved, currently having to build by hand all of the
mask textures for each effect. In order to have a variety of scenes, this should be automated,
fully using the capacities of the Unity development platform.

15

Acknowledgements

This internship would not have been possible without the supervision of Antoine Costes who
was open to discussion all along and guided me in numerous occasions. I would also like to
thank Ferran Arguelaguet who provided expertise for the more technical concepts and algo-
rithms and Anatole Lécuyer for taking time off his busy schedule for our meetings. Finally, but
not less important, thanks to the whole HYBRID team for their warm welcome and hospitality
everybody showed to me.

References

[1] Ferran Argelaguet Sanz et al. “Elastic Images: Perceiving Local Elasticity of Images
Through a Novel Pseudo-Haptic Deformation Effect”. In: ACM Transactions on Applied
Perception 10.3 (Aug. 2013), 17:1–17:14. URL: https://hal.archives-ouvertes.fr/hal-
00907775.

[2] Antoine Costes et al. “Touchy: Tactile Sensations on Touchscreens using a Cursor and
Visual Effects”. In: Proc. Haptics Symposium 2018 Companion. IEEE, 2018, pp. 132–132.

[3] A. Lecuyer et al. “Pseudo-haptic feedback: can isometric input devices simulate force
feedback?” In: Proceedings IEEE Virtual Reality 2000 (Cat. No.00CB37048). 2000, pp. 83–
90. DOI: 10.1109/VR.2000.840369.

[4] Anatole Lécuyer. “Simulating Haptic Feedback Using Vision: A Survey of Research and
Applications of Pseudo-haptic Feedback”. In: Presence: Teleoper. Virtual Environ. 18.1 (Jan.
2009), pp. 39–53. ISSN: 1054-7460. DOI: 10.1162/pres.18.1.39. URL: http://dx.doi.
org/10.1162/pres.18.1.39.

[5] Anatole Lécuyer, Jean-Marie Burkhardt, and Laurent Etienne. “Feeling Bumps and Holes
Without a Haptic Interface: The Perception of Pseudo-haptic Textures”. In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. CHI ’04. Vienna, Austria:
ACM, 2004, pp. 239–246. ISBN: 1-58113-702-8. DOI: 10.1145/985692.985723. URL: http:
//doi.acm.org/10.1145/985692.985723.

[6] Anatole Lécuyer, Sabine Coquillart, and Philippe Coiffet. “Simulating Haptic Information
with Haptic Illusions in Virtual Environments”. In: (Jan. 2000).

[7] Yusuke Ujitoko et al. “Yubi-Toko: finger walking in snowy scene using pseudo-haptic
technique on touchpad”. In: SIGGRAPH Asia Emerging Technologies. 2015.

[8] Rosane Ushirobira et al. “A forecasting algorithm for latency compensation in indirect
human-computer interactions”. In: In proceedings of ECC’16, the 15th annual European Con-
trol Conference. Aalborg, Denmark, June 2016, p. 6. URL: https://hal.inria.fr/hal-
01420653.

16

https://hal.archives-ouvertes.fr/hal-00907775
https://hal.archives-ouvertes.fr/hal-00907775
https://doi.org/10.1109/VR.2000.840369
https://doi.org/10.1162/pres.18.1.39
http://dx.doi.org/10.1162/pres.18.1.39
http://dx.doi.org/10.1162/pres.18.1.39
https://doi.org/10.1145/985692.985723
http://doi.acm.org/10.1145/985692.985723
http://doi.acm.org/10.1145/985692.985723
https://hal.inria.fr/hal-01420653
https://hal.inria.fr/hal-01420653

	Haptic sensations and interaction
	Pseudo-haptics
	Touchscreen interaction
	Touchy

	Contribution: the Encase effect
	Concept
	Implementation
	Mesh structure
	Projection methods
	Influence of cursor detail on visual appearance
	Touchscreen specifics
	Demo application

	Discussion and future work
	Current issues
	Current optimisations
	Future work

	Conclusion

