
LTBench: An Automatic Benchmark for
Physically-Based Rendering

Marco Freire1,2

1 Univ Rennes, F-35000 Rennes, France
2 ENS Rennes, F-35000 Rennes, France

marco.freire@ens-rennes.fr

Internship supervised by Jaroslav Křivánek, Associate Professor (doc. Ing., Ph.D.) of
Computer Science; carried out in the Computer Graphics Group at the Faculty of Math-
ematics and Physics of Charles University in Prague, from May 13, 2019 to August
13, 2019; in collaboration with Vojtěch Tázlar.

Abstract. The Light Transport Benchmark LTBench is a unified tool
for light transport algorithm testing and comparison. It eases this pro-
cess by providing specific settings for the most common test cases and
minimising user involvement. It can be easily extended and adapted to
suit the needs of the different actors in the physically-based rendering
community. This document is a specification of LTBench, explaining in
detail the principles and design decisions that will drive its implementa-
tion.

Keywords: Computer graphics · Rendering · Physically-based · Realis-
tic · Light transport · Benchmark · Testing · Comparison.

Introduction

Rendering is the generation of an image from the description of a scene. The purpose of
realistic rendering is to make the rendered image look physically plausible by simulating
the interactions of light with the scene as described by light transport theory. This
process is usually very computationally expensive.

Academic researchers and industry professionals are integral parts of the realistic
rendering community. Researchers try to come up with new methods to generate real-
istic renders of a scene and optimise existing ones, while industry professionals often
work on large-scale projects and need to produce satisfying results within tight dead-
lines. There is a large array of tools at their disposal such as multiple widely-used
renderers, many rendering algorithms with their own strengths and weaknesses, and
huge collections of scenes and 3D models. All of these renderers support their own
scene file formats which are often incompatible with one another, making working with
multiple tools at a time inconvenient.

These actors need to test and compare the different resources at their disposal. For
example, researchers may need to compare their new algorithm to a state-of-the-art
one, and industrial professionals need to run tests to find the resources better suited
to the task at hand. Due to the diversity of these resources and of their corresponding
standards, they often end up building ad hoc comparison tools from the ground up,
which can be very time-consuming.

1

Very few resources to help or automate this process exist. An automatic scene
converter is presented in [5]. Its enables algorithms implemented in different renderers
to be tested on the same scene, even if it is only available in a format compatible
with only one of the renderers. This tool can convert between the formats used by
the PBRT [54], Mitsuba [53] and LuxRender [49] (now LuxCoreRender) renderers. To
convert one of these formats into another, it first converts it into a canonical scene
representation which is then converted to the target format. It provides an Application
Programming Interface (API) to integrate with existing benchmarking tools.

We present LTBench, short for Light Transport Benchmark . It is an automatic
benchmark for physically-based rendering minimising user involvement. It allows users
to test and compare different rendering algorithms across renderers on multiple scenes.
LTBench is designed to be automated, making time-consuming comparisons much
faster and easier to setup. It is also extensible, so the users can modify it to fit their
needs and include new resources into the benchmark. Its main purpose is to become
a standard benchmark making the use of ad hoc tools unnecessary. Our approach is
similar to [5] but broader in scope. LTBench also provides benchmarking functional-
ities and allows conversions between more formats, targeting both the academic and
industrial rendering communities.

This document acts as a specification of LTBench, going from the most abstract
aspects of design, the motivation and the general principles, to the most concrete ones,
the actual design decisions that will guide its implementation. LTBench is as of the
writing of this document in the software design phase.

The document is structured as follows. First, an introduction to the field of realistic
and physically-based rendering is given. Then, the purpose and the design principles of
the benchmark are explained in detail. Next, the structure of the benchmark is derived.
Finally, the different design decisions that have to be taken to build the benchmark
are discussed.

1 Rendering Background

1.1 Rendering Principles

Rendering is the process of generating an image from the model of a scene. It has many
applications in the video games and film industries or in domains such as architecture,
to visualise buildings before their construction. Depending on the application, different
techniques are used. For example, rendering for video games must happen in real-
time, so the focus is on efficiency at the cost of realism. In architecture and design
visualisation, the focus is on realism at the expense of long rendering times. For the
rest of the paper, we will focus on realistic rendering.

To render a realistic representation of a scene, one must understand how light
travels through space and interacts with the objects in the scene. Physically-based
rendering simulates the flow of light based on its physical properties in order to generate
photorealistic images. Light transport theory gives a mathematical description of the
simulated light interactions.

The simulation of these interactions is computationally expensive. For this reason,
researchers are always trying to find new algorithms to speed up this process. Cur-
rently, most photorealistic rendering systems are based on the ray-tracing algorithm.
A ray tracer follows the path of different light rays as they travel through a scene and

2

interact with its components. The contributions of these light rays are then gathered
to construct an image of the scene.

Most techniques focus on the resolution of the light transport equation, first intro-
duced in [6], shown below in its modern form as taken from [7].

Lo(p, ωo) = Le(p, ωo) +

∫
S2

f(p, ωo, ωi)Lo(t(p, ωi),−ωi)|cosθi|dωi (1)

Where:
– Lo(p, ω), Le(p, ω) are respectively the exitant radiance and the emitted radiance,

at a point p along a direction ω;
– t(p, ω) is the ray-casting function that computes the first surface point intersected

by a ray originating at p traveling along ω;
– f(p, ωo, ωi) is the Bidirectional Scattering Distribution Function (BSDF) that com-

putes the probability at p that a ray coming from ωi exits along ωo;
– S2 is the unit sphere centered at p.

Radiance indicates how much power emitted, transmitted or received by a surface
will be received by an optical system looking at that surface from a specific direc-
tion. This equation is derived from the energy conservation principle and describes the
equilibrium distribution of radiance in the scene.

From the exitant radiance, we can compute the color values of the pixels forming
the resulting image. Since Lo appears on both sides of the equation, it is usually difficult
to solve numerically. For this reason, Monte Carlo integration is used to reliably solve
the light transport equation. A detailed description of this approach is given in [8].

1.2 Rendering Actors

Rendering is a field of computer graphics with a lot of different applications. The
long-standing research community is active; influential film, video game and graphics
processing companies such as Pixar, Sony or Nvidia shape the development of the
industry; and many artists use rendering tools to create their works.

Based on its application, we can divide rendering in academic rendering and in-
dustrial rendering. Academic rendering focuses on finding new techniques to improve
rendering quality and rendering times. New light transport algorithms are created and
the existing ones are optimised. Industrial rendering applies these techniques to large-
scale applications such as films or architectural visualisation. These renders can be
quite expensive to compute. For example, DreamWorks Animation’s How to train your
dragon 2 took 90 million core-hours to render and the data necessary to achieve it was
stored across 398 terabytes [4].

Both actors use different tools and have different goals. This makes rendering a
very complex field, where interactions between these actors are quite common.

1.3 Scene structure

For a renderer to produce an image, it needs to know what to draw and how to draw it.
The former is supplied by the scene description and the latter by the renderer settings.
We will refer to these elements together as scene information.

The scene description is a model of the scene. It contains a description of the
geometry of the objects in the scene, the materials applied to those objects and the
lights illuminating the scene. The renderer settings tell the renderer how to draw an

3

image of that model. They contain the light transport algorithm settings, the output
settings and post-processing options.

The camera is handled differently depending on the renderers. On the one hand,
it is a physical object and a part of the scene description, as it is usually handled in
Digital Content Creation (DCC) tools such as Autodesk 3ds Max [2]. Modifying the
camera would then mean modifying the scene itself. On the other hand, it can be seen
as a renderer setting dictating how the scene should be seen, as it is done in the PBRT
renderer. Changing it would then be similar to changing a parameter of the renderer
but not the scene itself.

The scene information is often encoded in multiple files. For example, the Moana
island scene [35] contains files defining the geometry of every object, textures for every
element, animation data and data necessary for the definition of the lights, cameras
and objects in the scene. These files use a wide array of different file formats depending
on the renderer which makes scene compatibility across renderers difficult.

2 Specification

2.1 General Purpose

The Light Transport Benchmark (LTBench) is an automated benchmark and compar-
ison framework for light transport algorithms. Its purpose is to allow users to compare
different light transport algorithms across renderers with minimal user involvement,
and automatically generate a comparison and performance report. This tool should be
useful to the different actors involved in the rendering community: researchers, industry
professionals and artists.

Rendering is a computationally expensive process which can take from a few min-
utes for simple scenes to days for industrial rendering. Render time depends on the
choice of algorithm and renderer, the scene complexity and the target quality. Some
algorithms fare better than others in scenes containing certain features. Therefore, it
is crucial to identify these features for each algorithm to improve rendering perfor-
mance. Unfortunately, comparing algorithms and renderers is too labour-intensive to
be carried out by hand each time.

Computer graphics professionals often develop their own tools to automate this
process. These tools have to be tailored to their target renderers, which are all imple-
mented differently. They use different input formats, feature different light transport
algorithms and require different settings. An easily extensible benchmark supporting
widely used renderers would provide a good alternative to these ad hoc tools.

Moreover, when developing new algorithms, researchers often use them to render
scenes tailored to their strengths. This sometimes leads to unintentionally biased com-
parisons in research articles. Having a transparent benchmark to test algorithms on a
wide array of scenes would prevent this from happening.

2.2 General Principles

The purpose of LTBench dictates the following design principles.

Automation LTBench should be able to render scenes on multiple renderers using
different algorithms and custom settings with minimal user involvement.

4

Accessibility The main objective is to facilitate the comparison process. If the entry
level is too high or the learning curve is too steep, users will stick to tools they know
how to use.

Extensibility The rendering community is very active and new algorithms, render-
ers and scenes are created continuously. It should be easy to integrate them in the
benchmark.

Transparency The inner workings should be clear to the users if they choose to
delve into them. The details of the comparison process have to be available in order for
the users to be able to assess what is being compared and ensure that the comparison
is fair.

2.3 Requirements

The following requirements are consequences of the general principles.

High-level In order to be accessible to everyone, the benchmark must be high-level.
Frequent use cases should be readily available to the user, without any adjustment
to the inner settings of the benchmark. An exception to this may be the extensibility
features such as integrating new renderers to the benchmark.

Modular In order to be extensible, the benchmark must be modular. The benchmark
must be constructed from independent modules each working on independent tasks.
Adding functionality to the benchmark should consist in adding modules to the system.

Out-of-core In order to render industrial-grade scenes, the benchmark must be out-
of-core. As a reference, the data to render the complete Moana island scene weighs
around 220 GB. This type of scenes cannot fit in live memory and must be handled
differently.

Open-source In order to be transparent and extensible, the benchmark should be
released under an open-source license allowing at least private use, distribution and
modification of the code. This ensures that users can verify the exact details of the
testing and comparison process and adapt it to better suit their needs. It should be
noted that some of the scenes included with the benchmark might be protected by
different copyright licenses.

DCC Integration In order to be accessible, it should be possible to store scenes in a
format compatible with modern digital content creation (DCC) tools, so that users can
easily modify scenes to fit their needs. We will focus on making our format compatible
with Autodesk 3ds Max.

Scene Separation Scene descriptions and renderer settings should be handled sepa-
rately. As explained previously, those two are very different concepts, so the distinction
between them must be clear in the structure of the benchmark.

5

2.4 Envisioned Workflow

Workflow The benchmark features a fully customisable rendering pipeline and com-
parison framework. The users can select scenes, renderers and algorithms and compare
them in whichever way they want by providing custom settings for the rendering algo-
rithms and the report assembly. The benchmark then outputs an HTML page display-
ing the output of the renderers, documenting their performance and comparing the
selected algorithms and renderers on the different scenes with the provided settings.

Use Cases Usually, the performed tests and comparisons will fall in one of the
following use cases:
– A comparison of the output of a single algorithm and renderer on multiple scenes,

when supplied with different sets of renderer settings to find the best settings for
those scenes;

– A comparison of different algorithms on the same renderer, to evaluate their
strengths and weaknesses on scenes showcasing different features;

– Regression testing on a renderer, which is a comparison of two versions of the same
renderer to see the changes or errors introduced in the newer one.
The user should also be able to choose any combination of scenes, algorithms and

renderers and render them without producing any comparison report.

Benchmark Options If a comparison falls in one of the previous use cases, users
should not have to set everything manually. Instead, they can choose the type of com-
parison they want to run, which will limit the number of settings available to them.

The user can choose from the following options:
– Same algorithm, same renderer (SASR);
– Different algorithms, same renderer (DASR);
– Regression testing (RT);
– Custom render (CR).

SASR If the SASR option is chosen, the user has to specify the renderer and algorithm
to be used and the scenes that will be rendered. The user can then supply the list of
renderer settings to be tested.

DASR If the DASR option is chosen, the user has to specify the renderer to be used, the
algorithms to be compared and the scenes that should be rendered. For each renderer
and algorithm pair, the user can supply specific rendering settings.

RT If the RT option is chosen, the user has to specify the renderer versions to be
compared.

CR This is the most general use case, where the user has to provide all of the settings.
If chosen, the user can choose any subset of renderers and for each renderer, any subset
of the supported algorithms.

2.5 Examples

The following examples are intended to represent real use cases of LTBench by illus-
trating how users would use the different tools provided with the benchmark to solve
their problems as efficiently as possible.

6

First Example

Situation A 3D artist has to render a set of scenes made in Blender [1], but the
Cycles [50] simple path tracer algorithm with the default settings is too slow to meet
the deadline. They would like to find settings to render these particular scenes more
efficiently without compromising image quality.

Steps:

1. Download and setup LTBench
LTBench is hosted in an online repository which needs to be cloned before use.
Cycles must already be installed on the system. The artist then provides the loca-
tion of the renderer to LTBench. The scene importer converts the set of scenes to
intermediate format and makes them visible to the benchmark.

2. Compare settings
The artist creates the set of different renderer settings to be tested on the scenes.
Then they select the Same Algorithm, Same Renderer (SASR) option, choose Cy-
cles as a renderer, the simple path tracer as the algorithm, and provide the custom
settings to LTBench which generates a comparison report.

3. Choose settings
The report compares the output and performance of the renderer with each one of
the custom settings supplied, giving the artist a solid basis for choosing the right
settings for these scenes.

Second Example

Situation A Ph.D. student proposes a variant of an existing algorithm implemented
in the Mitsuba [53] renderer. The variant could heavily improve performance while
maintaining the same level of quality. They would like to implement it as an extension
to Mitsuba, verify that it is working properly, compare it to the original algorithm and
potentially present it in an article. The new algorithm will be implemented on top of
a copy of the original Mitsuba renderer and takes the same parameters as the original
algorithm.

Steps:

1. Download and setup LTBench:
LTBench is hosted in an online repository which needs to be cloned before use.
The Mitsuba renderer and the copy should be already installed and setup in the
student’s computer. The student provides the location of the renderers to LTBench.

2. Develop new algorithm:
The student can start developing the variant. When the successive versions of the
algorithm are completed, they run an LTBench regression test on the original and
modified versions of Mitsuba. This allows them to prevent unwanted bugs intro-
duced by modifications of the code. This step is repeated until the new algorithm
is fully implemented and all bugs have been corrected.

3. Generate a comparison:
Once the implementation is finished and verified, the student wants to write a pa-
per on the advantages of their version compared to the original one. Since the two
versions of Mitsuba are perceived as different renderers by LTBench, the student

7

selects the Custom Render (CR) option. Then they select the original algorithm
and its variant on the corresponding implementations of Mitsuba, provide the ren-
derer settings for each one of them and choose the scenes that should be rendered.
The comparison report is then generated.

3 Structure

Intermediate
Scene

Description

Native
Scene

Description

Input
Scenes

Scene

Importer

Scene

Exporter
Renderers

Report

Assembler
Report

Intermediate
Renderer
Settings

Native
Renderer
Settings

Settings

Control

User
Settings

Fig. 1. LTBench general structure

3.1 Component Description

User Interaction

Input Scenes The input scenes can come in the native format of supported renderers
or directly in the intermediate format. The benchmark will include popular scenes
frequently used in research papers and scenes used in the computer graphics industry.
Users will also be able to include their own scenes in the benchmark. The choice of
scenes included in the benchmark is discussed in section 4.1.

User Settings The user settings consist of custom renderer settings for each algorithm
and renderer pair, and of report assembly settings affecting the shape and details of
the final report. These settings can override the ones provided with the scenes.

Report The report consists of automatically generated HTML files featuring different
performance tests and comparisons depending on the parameters provided by the user.
Different comparison templates are discussed in section 4.3.

Scene Assembly

Scene Importer The scene importer takes input scenes in their native format, con-
verts them into the intermediate file format and splits them into scene description and
renderer settings if there are any.

8

Scene Exporter The scene exporter takes the scene description and the renderer set-
tings in intermediate format and converts them to the target renderer’s format.

Settings Control The settings control merges the exported renderer settings with the
settings provided by the user. It overrides the exported settings if they are redefined.
It also uses the user-defined comparison settings to configure the report template.

Report Assembly

Report Assembler The report assembler takes the output from the renderers, the
applied renderer settings and automatically generates an HTML report comparing the
outputs and evaluating rendering performance. It can be customised through user-
defined settings.

Scene Information

Native Scene Information The native scene representation is the scene information
encoded in formats used by renderers supported by the benchmark. It consists of a
scene description and renderer settings.

Intermediate Scene Information The intermediate scene representation is used as a
transitional file format in which ideally every feature supported by every renderer in
the benchmark can be encoded. This allows the benchmark to take a scene in a specific
format and render it in renderers using different file formats. It is also broken into
scene description and renderer settings. The intermediate renderer settings consist of
the most general rendering settings, while algorithm-specific settings are handled by
the Settings Control and provided by the user. The need for an intermediate format is
discussed further in section 4.2.

3.2 Supported Renderers

We have chosen to support the following renderers in LTBench.

Open-source Renderers

PBRT PBRT [54] is heavily used in computer graphics research and teaching. It is
designed to be complete and illustrative. The companion book [7] acts as a documenta-
tion of the renderer, as a broad introduction to the field of physically-based rendering
and as a compendium of advanced techniques used in rendering.

Mitsuba Mitsuba [53] is also heavily used in computer graphics research. It derives
from PBRT with a focus on modularity and optimisation. It places a strong empha-
sis on experimental rendering. New algorithms are often implemented in Mitsuba by
researchers.

Cycles Cycles [50] is a production renderer developed by the Blender Project [1]. It
is designed for artistic control and to produce pleasing results out-of-the-box. It is
integrated with Blender, an open-source digital content creation tool, but a standalone
version is currently in development.

9

Closed-source Renderers

Corona and V-Ray Corona [51] and V-Ray [52] are high-performance photorealistic
renderers heavily used for architectural visualisation. They are available for Autodesk
3ds Max and other DCC tools, and are developed by Chaos Czech a.s. and Chaos Group
respectively. They also come as standalone applications usable through the command
line interface.

Arnold Arnold [55] is a long-standing production renderer used in the visual effects
and movie industries, developed by Solid Angle. It is integrated into Autodesk 3ds Max
and also comes as a standalone application.

Summary We have chosen Mitsuba and PBRT because of their predominance in the
research community. Cycles is one of the few open-source production renderers, used by
the Blender community, therefore is utilised by many artists all over the world. Corona
and V-Ray are widely used in architectural visualisation, where difficult light transport
situations often arise. Finally, since Arnold is available by default in Autodesk 3ds Max,
it seems reasonable to include it in the benchmark.

3.3 Extensibility

One of the benchmark’s design principles is extensibility. New scenes, new renderers
and new algorithms should be easy to add to the benchmark.

New Scenes To add scenes encoded in a supported format to the benchmark, the user
needs to run the scene importer on them so that they are converted to the intermediate
format. The scenes can then be recognised by the benchmark and selected for testing
purposes.

New Algorithms To add a new algorithm to an already supported renderer the
user has to modify the settings control to provide the algorithm-specific settings to
the renderer. This way, the user can configure the new algorithm by providing these
settings.

New Renderers Adding a new renderer to LTBench means telling the benchmark
how to convert from that renderer’s native format to the intermediate format and
vice versa. To convert from intermediate to native, the user must specify through a
provided Application Programming Interface (API) how to translate the tokens of the
intermediate format into native format. To convert from native to intermediate, the
user must provide a parser for the native format converting a scene file to a stream of
intermediate format tokens.

4 Design Decisions

Now that the motivation, purpose, design principles and structure of the benchmark
have been established, the next step is to discuss the specific decisions necessary to its
implementation. We must answer the following questions:

10

– What scenes should be included with the benchmark?
– What intermediate format should be used in the benchmark?
– How should materials be represented?
– How should the results be displayed?

4.1 Scenes

Criteria Different algorithms fare better or worse depending on the scene. For this
reason, researchers use scenes with various features to compare different rendering
algorithms. Industrial scenes are usually very complex and feature highly-detailed ge-
ometry, while scenes designed to test algorithms are often simpler, focusing on specific
light transport situations. The scenes included in the benchmark should represent both
types of scene.

Literature Survey We surveyed light transport papers published in ACM Trans-
actions on Graphics and EuroGraphics Symposium on Rendering between 2012 and
2018. References to the surveyed articles appear in appendix A. The scenes in Figure 3
are all used in multiple papers of the survey and are available at B. Bitterli’s Rendering
Resources [34], except for Mirror Balls.

Other online resources provide scenes in different formats, such as the McGuire
Computer Graphics Archive [36] or the PBRT-v3 scenes [33]. These archives include
classic scenes such as Cornell Box (Cornell University), Sponza (M. Dabrovic) or San
Miguel (Guillermo M. Leal Llaguno).

Licensing While the benchmark is open-source, each scene comes with its own license,
ranging from public domain scenes to scenes unsuitable for commercial purposes. Most
of them are redistributable, but the users should be aware of the specific licensing of
each scene.

4.2 Intermediate File Format

Criteria LTBench must support different renderers used by the different actors of
the rendering community, and users should be able to integrate their own into the
benchmark. All of these renderers accept different scene file formats. We want to be
able to render a scene encoded in any supported format on any supported renderer,
even those incompatible with the original scene file format.

To make this possible, we would need to be able to convert any scene file format
into any other. The number of different conversions increases with the square of the
number of supported formats. Developing a converter for each pair of formats would be
unfeasible. Instead, if a format is at first converted to an intermediate format, which
is then later converted to the target format, the number of conversions increases only
linearly with the number of supported formats. This is the approach taken in [5].

The intermediate file format acts as the backbone of the conversion pipeline in
LTBench. Ideally, we want to be able to convert a scene from any format to another,
so that every scene can be rendered on any renderer supported by the benchmark. In
practice, every renderer supports a unique set of features. Some renderers will support
certain features, but others will not. For this reason, conversions between formats will
always be lossy. Because of differing renderer implementations, it is also unreasonable

11

to take a scene, render it with two renderers supporting all of its features, and expect
the same output.

LTBench targets both academic and industrial computer graphics communities so
it should support features necessary to both. For this reason, the intermediate format
should be expressive, supporting as many features out-of-the-box as possible. The in-
termediate format should also be extensible so that any missing features can be easily
added.

Considered Formats Table 1 lists the file formats we considered for the interme-
diate file format of the benchmark. We considered formats used for the transfer or
exchange of 3D scenes.

Table 1. Considered File Formats

Ref. Name Developer

[38] Mitsuba W. Jakob
[42] PBRT Pharr et al.
[43] Universal Scene Description (USD) Pixar

[44] Alembic
Sony Pictures Imageworks,
Industrial Light & Magic

[37] OpenSceneGraph (OSG) —
[40] GL Transmission Format (glTF) Khronos Group
[39] Collada Khronos Group
[41] Open Game Engine Exchange (OpenGEX) Eric Lengyel

Mitsuba and PBRT The Mitsuba and PBRT file formats are the native formats of
their respective renderers. These are both academic renderers, so the formats support
similar features that align with our needs. They lack complex material definitions com-
monly used in the industry such as shading networks. The Mitsuba format is slightly
more expressive and has at least limited extensibility features, whereas the PBRT
format has none.

USD USD is a scene interchange format originally developed by Pixar for use in the
movie industry. It later became open-source and its scope extended to include other
rendering applications. Similarly to the Mitsuba and PBRT formats, its specification
covers most necessary scene description features such as geometry, light sources and
materials. Materials can be defined in multiple ways, through natively supported shad-
ing networks, in the MaterialX [45] format or with Open Shading Language [48]. USD
supports custom schemas, making it possible to add any feature to the format. Some
digital content creation tools are starting to support USD. It is also used or supported
by other influential companies, such as Dreamworks or Foundry. However, as an indus-
trial format with many features, the framework for its manipulation is correspondingly
big and complex.

Alembic Alembic was originally designed as a pure geometry interchange format. For
this reason, it has limited support for features essential to scene descriptions such as

12

light sources and materials. It can be extended via schemas, but there are no advantages
over USD, which supports more scene-related features and can even use Alembic as its
geometry file format.

OSG OSG is a graphics file format focused on OpenGL applications. It contains
OpenGL-specific constructs, lacks extensibility and documentation is scarce.

glTF, Collada and OpenGEX glTF is a widely adopted scene description format
mainly used in real-time rendering. Collada and OpenGEX are interchange formats
used in 3D applications for asset sharing. All of these formats share similar properties:
they lack support for some geometric primitives and a majority of light sources, and
their shading features are extremely limited. They are also difficult to extend.

Summary Out of the considered file formats, OSG, glTF, Collada and OpenGEX lack
support for some geometric primitives, light sources and shading features necessary to
physically-based rendering. On top of that, they are not designed to be easily extensible.
These formats do not fill the criteria for our intermediate representation.

Alembic does not offer any particular advantage over USD, and it is narrower in
scope. This leaves us with the Mitsuba, PBRT and USD file formats. While Mitsuba
and PBRT support many of the features needed, they are not intended to be used as
interchange formats. As a consequence, they are not designed around extensibility.

We have chosen USD as an intermediate format for all of its natively-supported
features and its great extensibility.

4.3 Result Comparison

Literature Survey To generate a report displaying, analysing and comparing the
rendered images, we need to know how this is usually done. We used the light transport
articles in the previous survey as a reference.

Most of the surveyed papers introduce new light transport algorithms or modify
existing ones to improve their performance. Rendered images are usually compared
side-by-side, with zoom insets showing important parts of the renders.

Papers compare renders obtained by modifying a single parameter. Most of the
time, this parameter is the algorithm used to render the scene. This is showcased as
a comparison of the equal-time renders produced by the different algorithms on the
same scene. The varying parameter can also be a renderer setting, such as the number
of samples per pixel.

Occasionally the output is compared to a reference render obtained after a very
long rendering time. Some papers compare the outputs by creating pixel-wise difference
images between different outputs.

To demonstrate the performance of an algorithm, papers use convergence plots.
These plots graph the error between the output and the reference as a function of time
or of a certain renderer setting. Convergence plots use different error metrics in the
papers, but the most frequent ones are the mean-square error and the root-mean-square
error between the output and the reference renders.

HTML Reports The survey articles often link to an interactive HTML report that
allows the user to view the different results showcased in the articles. These HTML
reports are often structured in a similar fashion. The following variants are seen multiple
times in the papers.

13

Selective View This view is illustrated in Figure 4a.
This is the simplest of the views. When the user clicks on an example in the lower

part, it is enlarged and displayed in the upper part.

Crosshair View This view is illustrated in Figure 4b.
The crosshair in the view is bound to the movement of the cursor. On each of the

four quadrants of the crosshair is a different example. The user can drag one of the
examples from the lower part of the view to one of the quadrants and drop it, and the
example will be displayed there.

Hierarchical View This view is illustrated in Figure 4c.
There are two levels of widgets in the figure. In the first level, each widget represents

a specific test or a comparison. Once a comparison is chosen, each widget in the second
level corresponds to an output image. In the middle part, the image corresponding to
the selected second-level widget is displayed. The user can then move the image and
zoom in and out on it. In the lower part are zooms on the cursor for each output image
on the current comparison.

This view is implemented in the Javascript Extended-Range Image (JERI) [3]
framework. This framework can also compute image differences based on multiple error
metrics. The user can also use hotkeys to navigate between widgets.

5 Future Work

5.1 Material Representation

Materials characterise how light interacts with an object. Objects can reflect, transmit
or scatter light in different ways. For example, reflection can be diffuse, glossy or spec-
ular. There are infinitely many variants and combinations of these properties. Figure 2
shows a few examples of materials taken from [47].

For this reason, materials are usually hard to describe. Different renderers use
different models to represent them. An academic renderer such as PBRT may use
simplified descriptions with predefined types of materials such as metal, plastic or
glass. On the other hand, industrial renderers often use shading networks to represent
materials. A shading network is a collection of connected nodes that defines how colors,
textures and lights contribute to the final appearance of surfaces.

These two material representations are very different and translation from one to
another may be problematic and lossy. Nonetheless, we need to pick one specific format
that will be used for the materials in the intermediate scene representation.

Currently, we are looking into two of the material transfer formats used in the com-
puter graphics industry: MaterialX [45], developed by Lucasfilm and Material Defini-
tion Language (MDL) [46] developed by Nvidia. We need to look at the features offered
by each one of these formats and see which one suits our needs the best.

5.2 Minimal Working Product

The next major step is to implement a minimal working product of the benchmark. It
should feature a small selection of scenes, support two renderers and be able to generate
a simple report. Starting with the Mitsuba and PBRT renderers seems to be a good

14

first step which avoids some of the technical problems presented in this document,
because of their similarity.

Once this version of LTBench is implemented and tested, the rest of the features can
be added progressively using the information in this document, thanks to the modular
structure and extensibility features of the benchmark.

Conclusion

This document explains the motivation behind the LTBench project, the purpose of
the benchmark itself and the design decisions that will drive its implementation. It
documents the research carried out for the design phase of LTBench and records all of
the useful information gathered during this phase. It should serve as a reference for the
future implementation of the benchmark, which will be the next step of this project.

Acknowledgements

I would like to thank Vojtěch Tázlar for the invaluable feedback he provided during
the writing of this report and in general for helping me during my internship, which
he will continue in the context of his Master’s Thesis. I also would like to thank my
supervisor, Jaroslav Křivánek, for the time spent overseeing this project and for sharing
his insights on the world of physically-based rendering with me.

References

1. Blender project. https://www.blender.org/
2. Autodesk: Autodesk 3ds Max. https://www.autodesk.com/products/3ds-

max/overview
3. Disney Research: Javascript Extended-Range Image. https://jeri.io/
4. Dreamworks Animation: How to train your dragon 2. https://graphicacy.com/

portfolio-item/dreamworks/

5. Hagemann, L., Oliveira, M.: Scene conversion for physically-based renderers. pp.
226–233 (10 2018). https://doi.org/10.1109/SIBGRAPI.2018.00036

6. Kajiya, J.T.: The rendering equation. In: Proceedings of the 13th annual conference
on Computer graphics and interactive techniques - SIGGRAPH ’86. ACM Press
(1986). https://doi.org/10.1145/15922.15902

7. Pharr, M., Jakob, W., Humphreys, G.: Physically Based Rendering: From Theory
to Implementation. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
3rd edn. (2016), http://www.pbr-book.org/

8. Veach, E.: Robust Monte Carlo Methods for Light Transport Simulation. Ph.D.
thesis, Stanford, CA, USA (1998), aAI9837162

15

https://www.blender.org/
https://jeri.io/
https://graphicacy.com/portfolio-item/dreamworks/
https://graphicacy.com/portfolio-item/dreamworks/
https://doi.org/10.1109/SIBGRAPI.2018.00036
https://doi.org/10.1145/15922.15902
http://www.pbr-book.org/

A Additional References

Survey

9. Belcour, L., Yan, L.Q., Ramamoorthi, R., Nowrouzezahrai, D.: Antialiasing com-
plex global illumination effects in path-space. ACM Trans. Graph. 36(1) (Jan
2017). https://doi.org/10.1145/2990495, http://doi.acm.org/10.1145/2990495

10. Bitterli, B., Jakob, W., Novák, J., Jarosz, W.: Reversible jump metropolis light
transport using inverse mappings. ACM Transactions on Graphics (Presented at
SIGGRAPH) 37(1) (jan 2018). https://doi.org/10.1145/3132704

11. Bitterli, B., Jarosz, W.: Beyond points and beams: Higher-dimensional photon sam-
ples for volumetric light transport. ACM Trans. Graph. 36(4), 112:1–112:12 (Jul
2017). https://doi.org/10.1145/3072959.3073698, http://doi.acm.org/10.1145/

3072959.3073698

12. Chaitanya, C.R.A., Belcour, L., Hachisuka, T., Premoze, S., Pantaleoni, J.,
Nowrouzezahrai, D.: Matrix bidirectional path tracing. In: Proceedings of the
Eurographics Symposium on Rendering: Experimental Ideas & Implementations.
pp. 23–32. SR ’18, Eurographics Association, Goslar Germany, Germany (2018).
https://doi.org/10.2312/sre.20181169, https://doi.org/10.2312/sre.20181169

13. Georgiev, I., Křivánek, J., Davidovič, T., Slusallek, P.: Light transport simulation
with vertex connection and merging. ACM Trans. Graph. 31(6), 192:1–192:10 (Nov
2012). https://doi.org/10.1145/2366145.2366211, http://doi.acm.org/10.1145/

2366145.2366211

14. Gruson, A., Hua, B.S., Vibert, N., Nowrouzezahrai, D., Hachisuka, T.: Gradient-
domain volumetric photon density estimation. ACM Trans. Graph. 37(4), 82:1–
82:13 (Jul 2018). https://doi.org/10.1145/3197517.3201363, http://doi.acm.org/
10.1145/3197517.3201363

15. Gruson, A., Ribardière, M., Šik, M., Vorba, J., Cozot, R., Bouatouch, K., Křivánek,
J.: A spatial target function for metropolis photon tracing. ACM Trans. Graph.
36(4) (Nov 2016). https://doi.org/10.1145/3072959.2963097, http://doi.acm.

org/10.1145/3072959.2963097

16. Guo, J.J., Bauszat, P., Bikker, J., Eisemann, E.: Primary sample space path
guiding. In: Proceedings of the Eurographics Symposium on Rendering: Ex-
perimental Ideas & Implementations. pp. 73–82. SR ’18, Eurographics Associ-
ation, Goslar Germany, Germany (2018). https://doi.org/10.2312/sre.20181174,
https://doi.org/10.2312/sre.20181174

17. Hachisuka, T., Kaplanyan, A.S., Dachsbacher, C.: Multiplexed metropo-
lis light transport. ACM Trans. Graph. 33(4), 100:1–100:10 (Jul 2014).
https://doi.org/10.1145/2601097.2601138, http://doi.acm.org/10.1145/

2601097.2601138

18. Hachisuka, T., Pantaleoni, J., Jensen, H.W.: A path space extension for ro-
bust light transport simulation. ACM Trans. Graph. 31(6), 191:1–191:10 (Nov
2012). https://doi.org/10.1145/2366145.2366210, http://doi.acm.org/10.1145/

2366145.2366210

19. Jendersie, J., Grosch, T.: An improved multiple importance sampling heuristic
for density estimates in light transport simulations. In: Proceedings of the Eu-
rographics Symposium on Rendering: Experimental Ideas & Implementations.
pp. 65–72. SR ’18, Eurographics Association, Goslar Germany, Germany (2018).
https://doi.org/10.2312/sre.20181173, https://doi.org/10.2312/sre.20181173

16

https://doi.org/10.1145/2990495
http://doi.acm.org/10.1145/2990495
https://doi.org/10.1145/3132704
https://doi.org/10.1145/3072959.3073698
http://doi.acm.org/10.1145/3072959.3073698
http://doi.acm.org/10.1145/3072959.3073698
https://doi.org/10.2312/sre.20181169
https://doi.org/10.2312/sre.20181169
https://doi.org/10.1145/2366145.2366211
http://doi.acm.org/10.1145/2366145.2366211
http://doi.acm.org/10.1145/2366145.2366211
https://doi.org/10.1145/3197517.3201363
http://doi.acm.org/10.1145/3197517.3201363
http://doi.acm.org/10.1145/3197517.3201363
https://doi.org/10.1145/3072959.2963097
http://doi.acm.org/10.1145/3072959.2963097
http://doi.acm.org/10.1145/3072959.2963097
https://doi.org/10.2312/sre.20181174
https://doi.org/10.2312/sre.20181174
https://doi.org/10.1145/2601097.2601138
http://doi.acm.org/10.1145/2601097.2601138
http://doi.acm.org/10.1145/2601097.2601138
https://doi.org/10.1145/2366145.2366210
http://doi.acm.org/10.1145/2366145.2366210
http://doi.acm.org/10.1145/2366145.2366210
https://doi.org/10.2312/sre.20181173
https://doi.org/10.2312/sre.20181173

20. Kaplanyan, A.S., Hanika, J., Dachsbacher, C.: The natural-constraint represen-
tation of the path space for efficient light transport simulation. ACM Trans.
Graph. 33(4), 102:1–102:13 (Jul 2014). https://doi.org/10.1145/2601097.2601108,
http://doi.acm.org/10.1145/2601097.2601108

21. Kettunen, M., Manzi, M., Aittala, M., Lehtinen, J., Durand, F., Zwicker, M.:
Gradient-domain path tracing. ACM Trans. Graph. 34(4), 123:1–123:13 (Jul 2015).
https://doi.org/10.1145/2766997, http://doi.acm.org/10.1145/2766997

22. Kutz, P., Habel, R., Li, Y.K., Novák, J.: Spectral and decomposition tracking for
rendering heterogeneous volumes. ACM Trans. Graph. 36(4), 111:1–111:16 (Jul
2017). https://doi.org/10.1145/3072959.3073665, http://doi.acm.org/10.1145/

3072959.3073665

23. Křivánek, J., Georgiev, I., Hachisuka, T., Vévoda, P., Šik, M., Nowrouzezahrai,
D., Jarosz, W.: Unifying points, beams, and paths in volumetric light
transport simulation. ACM Trans. Graph. 33(4), 103:1–103:13 (Jul 2014).
https://doi.org/10.1145/2601097.2601219, http://doi.acm.org/10.1145/

2601097.2601219

24. Manzi, M., Kettunen, M., Aittala, M., Lehtinen, J., Durand, F., Zwicker, M.:
Gradient-Domain Bidirectional Path Tracing. In: Lehtinen, J., Nowrouzezahrai, D.
(eds.) Eurographics Symposium on Rendering - Experimental Ideas & Implementa-
tions. The Eurographics Association (2015). https://doi.org/10.2312/sre.20151168

25. Moon, B., Iglesias-Guitian, J.A., Yoon, S.E., Mitchell, K.: Adaptive rendering
with linear predictions. ACM Trans. Graph. 34(4), 121:1–121:11 (Jul 2015).
https://doi.org/10.1145/2766992, http://doi.acm.org/10.1145/2766992

26. Moon, B., McDonagh, S., Mitchell, K., Gross, M.: Adaptive poly-
nomial rendering. ACM Trans. Graph. 35(4), 40:1–40:10 (Jul 2016).
https://doi.org/10.1145/2897824.2925936, http://doi.acm.org/10.1145/

2897824.2925936

27. Otsu, H., Kaplanyan, A.S., Hanika, J., Dachsbacher, C., Hachisuka, T.: Fusing state
spaces for markov chain monte carlo rendering. ACM Trans. Graph. 36(4), 74:1–
74:10 (Jul 2017). https://doi.org/10.1145/3072959.3073691, http://doi.acm.org/
10.1145/3072959.3073691

28. Pantaleoni, J.: Charted metropolis light transport. ACM Trans. Graph. 36(4),
75:1–75:14 (Jul 2017). https://doi.org/10.1145/3072959.3073677, http://doi.

acm.org/10.1145/3072959.3073677

29. Tessari, L., Hanika, J., Dachsbacher, C.: Local quasi-monte carlo exploration. In:
Proceedings of the Eurographics Symposium on Rendering: Experimental Ideas
& Implementations. pp. 71–81. EGSR ’17, Eurographics Association, Goslar Ger-
many, Germany (2017). https://doi.org/10.2312/sre.20171196, https://doi.org/
10.2312/sre.20171196

30. Vorba, J., Karĺık, O., Šik, M., Ritschel, T., Křivánek, J.: On-line learning of
parametric mixture models for light transport simulation. ACM Trans. Graph.
33(4), 101:1–101:11 (Jul 2014). https://doi.org/10.1145/2601097.2601203, http:
//doi.acm.org/10.1145/2601097.2601203

31. Vorba, J., Křivánek, J.: Adjoint-driven russian roulette and splitting in
light transport simulation. ACM Trans. Graph. 35(4), 42:1–42:11 (Jul
2016). https://doi.org/10.1145/2897824.2925912, http://doi.acm.org/10.1145/

2897824.2925912

32. Van de Woestijne, J., Frederickx, R., Billen, N., Dutré, P.: Temporal co-
herence for metropolis light transport. In: Proceedings of the Eurographics

17

https://doi.org/10.1145/2601097.2601108
http://doi.acm.org/10.1145/2601097.2601108
https://doi.org/10.1145/2766997
http://doi.acm.org/10.1145/2766997
https://doi.org/10.1145/3072959.3073665
http://doi.acm.org/10.1145/3072959.3073665
http://doi.acm.org/10.1145/3072959.3073665
https://doi.org/10.1145/2601097.2601219
http://doi.acm.org/10.1145/2601097.2601219
http://doi.acm.org/10.1145/2601097.2601219
https://doi.org/10.2312/sre.20151168
https://doi.org/10.1145/2766992
http://doi.acm.org/10.1145/2766992
https://doi.org/10.1145/2897824.2925936
http://doi.acm.org/10.1145/2897824.2925936
http://doi.acm.org/10.1145/2897824.2925936
https://doi.org/10.1145/3072959.3073691
http://doi.acm.org/10.1145/3072959.3073691
http://doi.acm.org/10.1145/3072959.3073691
https://doi.org/10.1145/3072959.3073677
http://doi.acm.org/10.1145/3072959.3073677
http://doi.acm.org/10.1145/3072959.3073677
https://doi.org/10.2312/sre.20171196
https://doi.org/10.2312/sre.20171196
https://doi.org/10.2312/sre.20171196
https://doi.org/10.1145/2601097.2601203
http://doi.acm.org/10.1145/2601097.2601203
http://doi.acm.org/10.1145/2601097.2601203
https://doi.org/10.1145/2897824.2925912
http://doi.acm.org/10.1145/2897824.2925912
http://doi.acm.org/10.1145/2897824.2925912

Symposium on Rendering: Experimental Ideas & Implementations. pp. 55–
63. EGSR ’17, Eurographics Association, Goslar Germany, Germany (2017).
https://doi.org/10.2312/sre.20171194, https://doi.org/10.2312/sre.20171194

Scenes

33. Scenes for pbrt-v3. https://casual-effects.com/data/
34. Bitterli, B.: Rendering resources. https://benedikt-bitterli.me/resources/

(2016)
35. Disney Enterprises, Inc.: Moana island scene. https://www.technology.

disneyanimation.com/islandscene

36. McGuire, M.: Computer graphics archive. https://casual-effects.com/data/

(July 2017)

File formats

37. Open Scene Graph (OSG). http://www.openscenegraph.org/
38. Jakob, W.: Mitsuba 0.5.0 renderer documentation. http://mitsuba-renderer.

org/docs.html

39. Khronos Group: Collada. https://www.khronos.org/collada/
40. Khronos Group: GL Transmission Format (glTF). https://www.khronos.org/

gltf/

41. Lengyel, E.: Open Game Engine Exchange (OpenGEX). https://opengex.org/
42. Pharr, M., Jakob, W., Humphreys, G.: Pbrt-v3 renderer input file format. https:

//www.pbrt.org/fileformat-v3.html

43. Pixar: Universal Scene Description (USD). https://graphics.pixar.com/usd/

docs/index.html

44. Sony Pictures Imageworks, Industrial Light & Magic: Alembic. https://www.

alembic.io/

Materials

45. Lucasfilm: MaterialX. https://www.materialx.org/
46. Nvidia: Material Definition Lanugage (MDL). https://www.nvidia.com/en-us/

design-visualization/technologies/material-definition-language/

47. Realistic Graphics Lab: Material database. https://rgl.epfl.ch/materials
48. Sony Pictures Imageworks: Open Shading Language (OSL). https://github.com/

imageworks/OpenShadingLanguage

Renderers

49. LuxCoreRender renderer. https://luxcorerender.org/
50. Blender Project: Cycles renderer. https://docs.blender.org/manual/en/

latest/render/cycles/index.html

51. Chaos Czech a.s.: Corona renderer. https://corona-renderer.com/
52. Chaos Group: V-ray for 3ds max. https://www.chaosgroup.com/vray/3ds-max

18

https://doi.org/10.2312/sre.20171194
https://doi.org/10.2312/sre.20171194
https://benedikt-bitterli.me/resources/
https://www.technology.disneyanimation.com/islandscene
https://www.technology.disneyanimation.com/islandscene
https://casual-effects.com/data/
http://www.openscenegraph.org/
http://mitsuba-renderer.org/docs.html
http://mitsuba-renderer.org/docs.html
https://www.khronos.org/collada/
https://www.khronos.org/gltf/
https://www.khronos.org/gltf/
https://opengex.org/
https://www.pbrt.org/fileformat-v3.html
https://www.pbrt.org/fileformat-v3.html
https://graphics.pixar.com/usd/docs/index.html
https://graphics.pixar.com/usd/docs/index.html
https://www.alembic.io/
https://www.alembic.io/
https://www.materialx.org/
https://www.nvidia.com/en-us/design-visualization/technologies/material-definition-language/
https://www.nvidia.com/en-us/design-visualization/technologies/material-definition-language/
https://rgl.epfl.ch/materials
https://github.com/imageworks/OpenShadingLanguage
https://github.com/imageworks/OpenShadingLanguage
https://luxcorerender.org/
https://docs.blender.org/manual/en/latest/render/cycles/index.html
https://docs.blender.org/manual/en/latest/render/cycles/index.html
https://corona-renderer.com/
https://www.chaosgroup.com/vray/3ds-max

53. Jakob, W.: Mitsuba 0.6.0 renderer. https://github.com/mitsuba-renderer/

mitsuba

54. Pharr, M., Jakob, W., Humphreys, G.: PBRT-v3 renderer. https://github.com/
mmp/pbrt-v3

55. Solid Angle: Arnold renderer. https://www.arnoldrenderer.com/

19

https://github.com/mitsuba-renderer/mitsuba
https://github.com/mitsuba-renderer/mitsuba
https://github.com/mmp/pbrt-v3
https://github.com/mmp/pbrt-v3
https://www.arnoldrenderer.com/

B Figures

(a) White acrylic felt (b) Morpho Menelaus butterfly wing

(c) Cardboard (d) Copper sheet

Fig. 2. Different types of materials from the Realistic Graphics Lab Material Database

20

(a) The Wooden Staircase; Wig42

(b) Country Kitchen; Jay-Artist

(c) Veach, Ajar; B. Bitterli

(d) Salle de Bain; nacimus

(e) Contemporary Bathroom; Mareck (f) Mirror Balls; T. Hachisuka

Fig. 3. Frequently used scenes in the articles of the survey.

21

Example 2

Reference Example 1 Example 2

Example 3 Example 4 Example 5

Click to select

(a) Selective View

Reference

Example 5 Example 2

Example 1

Reference Example 1 Example 2

Example 3 Example 4 Example 5

Drag & Drop

(b) Crosshair View

Example 1

Test 1

Example 2

Test 2

Example 3 Example 4

Image

Zoom on
cursor

Example 1

Zoom on
cursor

Example 2

Zoom on
cursor

Example 3

Zoom on
cursor

Example 4

(c) Hierarchical View

Fig. 4. General structure of the comparison views showcased in the articles of the
survey

22

	LTBench: An Automatic Benchmark for Physically-Based Rendering

