
Master research Internship

Internship report

Fast Next-Event Estimation for Reflection and Refraction on
Triangles with Interpolated Normals

Domain: Graphics - Light Transport Simulation

Author:
Marco Freire

Supervisors:
Nicolas Holzschuch

Maverick - Inria Rhône-Alpes

Abstract:

Physically-based rendering creates photorealistic images based on light transport theory. Path
tracing renders an image by casting light paths through each pixel into the scene and simulating
their interactions until they hit a light. It slowly converges as the number of paths traced per pixel
increases, creating noisy images when this parameter is small. Next-event estimation accelerates
convergence by connecting each interaction to a light source, producing better results with the same
number of samples. It fails when there is no direct line of sight between a light and the interaction.
Broadening the range of use cases of next-event estimation is essential for path tracing. Algorithms
have been proposed to extend it to situations where a refractive interface breaks the line of sight,
or where the light is only visible on a reflective surface. They rely on a 2D Newton’s method to
find these paths, which is expensive and sometimes struggles to converge towards a solution. The
purpose of this internship is to accelerate next-event estimation in these situations. By using the
coplanarity condition stated in the reflection and refraction laws, the domain of the search can
be restricted to a conic section. We can then reformulate the problem over this one-dimensional
space, and use a 1D Newton’s method to find the refracted or reflected paths. Their contribution to
the radiance is computed and taken into account by the path tracer, improving its convergence in
difficult lighting situations. In this internship report, we define next-event estimation in the context
of light transport theory, and we present two techniques working in the reflective and refractive
situations. We then present the contribution of the internship divided in three parts: reducing the
dimensionality of the problem, finding its solutions and computing their contribution. Finally, we
end with a discussion of the implementation of the algorithm and a summary of the contributions
of the internship.

Contents

1 Introduction 1

2 Prerequisites 2
2.1 Light transport theory . 3
2.2 Monte Carlo path tracing . 6

3 State of the art 9
3.1 Global next-event estimation (GNEE) . 10
3.2 Manifold next-event estimation (MNEE) . 12
3.3 Discussion . 14

4 Overview 15
4.1 Motivation . 15
4.2 Algorithm overview . 16

5 Dimensionality reduction 17
5.1 Refraction constraint function . 17
5.2 Coplanarity conic section . 19
5.3 Dimensionality reduction . 24

1

6 Finding refracted paths 27
6.1 Real-root isolation algorithms . 27
6.2 Newton’s method . 33
6.3 Conic projection . 35

7 Contribution of refracted paths 37
7.1 Contribution . 37
7.2 Distance correction factor . 38

8 Implementation 39
8.1 Current state . 39
8.2 Assumptions and improvements . 40

9 Conclusion 41

A Conic section parametrisation 42
A.1 Centre . 42
A.2 Angle . 43
A.3 Affine transformation . 44

B Triangle-hyperbola intersection 44

C Ray differentials 44

D Origin of the distance correction factor 46

1 Introduction

In computer graphics, rendering is the process of taking a description of a scene and producing
an image of that scene as seen by an observer. It has many different applications in multiple
domains. The movie and video game industries rely on rendering algorithms to create the images
displayed on screen. Rendering is also used in architecture to visualise models of buildings before
they are built in the real world. In general, it is heavily employed for simulation and visualisation
purposes. Depending on the application, rendering can either be done in real-time or offline. In the
former case, the main focus is efficiency, since images have to be created fast enough so that the
observer cannot see the individual frames. In the latter case, time is not a limitation so a lot of
attention can be put into creating a realistic image. Physically-based rendering aims to create an
image of the scene based on the physics of light transport theory. These laws rule the interactions of
light with the different components of the scene. The main goal is to create photorealistic images,
indistinguishable from a real photography of the scene. The most important interaction of light
with the scene is scattering. By understanding how light scatters when it encounters a surface, we
can simulate its behaviour and create a physically accurate image.

Path tracing is the most used physically-based rendering algorithm. It shoots light rays from
the eye of the observer through every pixel of the image into the scene. These rays form a light
path that bounces around in the scene, and whose interactions are simulated according to light
transport theory. Finally, when the path meets a light source, the illumination provided by that
light is propagated back to the initial pixel to compute its final value. How light paths bounce in the
scene is determined stochastically. For this reason, there is no guarantee that a light path cast from
the eye will ever reach a light source and contribute to the value of the pixel. This leads to noisy
outputs in complex scenes rendered with regular path tracing. To avoid this, next-event estimation
(NEE) techniques cast a ray from every interaction point towards a light source. NEE significantly
improves the quality of the resulting image, since every path now contributes to the pixel’s color.

Unfortunately, NEE only works if there is a direct line of sight between the interaction point
and a light source. This line of sight is often obstructed by objects in the scene. Researchers have
developed algorithms [36][16] to apply NEE through a refractive interface or after a bounce on a
reflective surface. This extends the range of situations NEE can be used in. These algorithms are
far from trivial, since straight paths between a point and a light traversing a refractive interface do
not obey Snell’s law of refraction. These methods find valid paths by searching the two-dimensional
interface for the roots of an equation encoding the refraction law. A 2D Newton-Raphson method is
used for finding the roots. This is a non-linear problem which can struggle to converge to a solution
in difficult situations and requires expensive computation to solve. The goal of this internship is to
make NEE computation faster by searching for valid paths over a one-dimensional domain instead.

The reflection and refraction laws determine the relationship between the angle of incidence
and reflection or refraction, but they also state that the corresponding rays and the normal to the
surface are coplanar. Previous algorithms encoded these two statements in a 2D constraint function
and looked for its roots. These conditions can be separated and evaluated in two stages. First, the
coplanarity condition can be written as a quadratic form defining a conic section over each triangle
of the interface. For a given triangle, all roots of the constraint function necessarily lie on that conic.
Then, by reformulating the constraint function over the conic section, we can use a 1D Newton’s
method to find the solutions to the constraint function. Finally, we can compute the contribution
of these light paths to the illumination of the scene.

In this internship report, we begin by giving the theoretical framework of light transport simu-

1

lation needed to understand how path tracing works and the reasons behind next-event estimation,
on which the internship is based. Next, we explain why NEE is not applicable as soon as there is no
line of sight between the interaction point and a light source. We describe two algorithms extending
the use of NEE to situations where the two points are separated by refractive or reflective interfaces.
The next sections describe the three main phases of the algorithm: reducing the dimensionality of
the problem, finding its solutions and computing their contribution. Finally, the implementation of
the algorithm is discussed and the contribution is summarised.

2 Prerequisites

Modern physically-based rendering algorithms such as path tracing are built upon the ray tracing
algorithm. While light naturally propagates from the light sources to the eye of the observer, this
algorithm shoots rays into the scene and computes their interactions with its components. For each
pixel, a ray going from the eye of the observer and passing through the center of the pixel is cast
into the scene. Then, the nearest intersection of the ray with the scene is computed. Finally, the
illumination at that point is calculated by shooting a ray towards the light sources, to see whether
the point is lit by them or not. By repeating this process for each pixel, an image of the scene is
created. The ray tracing algorithm is illustrated in figure 1.

Figure 1: Ray tracing illustration taken from Wikipedia

The core idea of ray tracing was first introduced by Appel [4] in 1968. He devised an algorithm
to determine which surfaces in a scene are visible from the point of view of an observer, and
compute shadows on those surfaces by casting light rays. Then Whitted [37] improved the method
by presenting a recursive ray tracing algorithm in 1980, often referred to as Whitted-style ray
tracing. This algorithm simulates perfect reflection and refraction by recursively shooting new rays
at each intersection point according to Snell’s laws. Cook et al. [9] extended this method in 1984
to accurately simulate more advanced features such as glossy reflection and refraction, area light
sources, depth of field and motion blur. Finally, Kajiya [24] formulated the rendering problem within
a rigorous theoretical framework in 1986, where he introduced the modern path tracing algorithm.
He reformulates the rendering problem as the resolution of an integral equation derived from energy
conservation laws in the scene. The path tracing algorithm solves this equation by Monte Carlo
integration.

2

https://en.wikipedia.org/wiki/Ray_tracing_(graphics)

2.1 Light transport theory

In this section we will introduce the concepts required to understand the path tracing algorithm
and the importance of next-event estimation, which will be the main focus of this internship. We
also introduce basic notions about light interactions with participating media, which will be useful
later when computing the contribution of light paths in section 7. In the rest of this section, we will
use the theoretical framework found in the textbooks [12] and [28].

2.1.1 Radiometric quantities

To begin to understand physically-based rendering, it is necessary to introduce the physical quanti-
ties that measure and describe light propagation in an environment. The field of radiometry studies
the physical measurement of light and uses radiometric quantities for this purpose. For the sake of
simplicity, we will only introduce the most essential radiometric quantities: the radiance and the
bidirectional reflection distribution function (BRDF). To study light transport, we place ourselves
in the model of geometrical optics and we compute the steady-state distribution of radiance in
the scene. Radiometric quantities depend on wavelength, but we will not mention this dependence
explicitly here.

Radiance Radiance is a five-dimensional quantity that measures how much radiant power Φ
arrives or leaves at a surface point per unit solid angle dω and per unit projected area dA⊥. It is
defined by:

L =
∂2Φ

∂ω∂A⊥
=

∂2Φ

∂ω∂A cos θ
[W · sr−1 ·m−2]

where radiant power Φ measures how much energy flows through a surface per unit time. We use
L(x ← Θ) (resp. L(x → Θ)) to denote the radiance arriving to (resp. leaving from) the point x
along the direction Θ.

Radiance is the fundamental quantity in light transport simulation. All other radiometric quan-
tities can be derived from it by integration. The response of sensors such as a camera or an eye is
proportional to the radiance incident upon them. This makes radiance the quantity to compute to
obtain the render of a scene. Also, radiance is invariant along straight paths in a vacuum. This
means that given a straight path connecting two points, the radiance leaving the first point towards
the second one is equal to the radiance arriving to the second point from the first one. This does
not hold when light travels through a medium. Light will interact with it, introducing new phys-
ical phenomena that invalidate this property. We will assume to work in a vacuum unless stated
otherwise.

BRDF When light hits a surface at a point p with incident direction Ψ, it leaves the surface at
a point q with outgoing direction Θ. We assume here that p and q are the same point, ignoring
subsurface scattering.

The BRDF encodes the appearance of the materials in the scene by describing how incident
energy is reflected by a surface depending on the incident and reflected directions. It is defined by:

fr(x,Ψ→ Θ) =
dL(x→ Θ)

dE(x← Ψ)
=

dL(x→ Θ)

L(x← Ψ) cos(Nx, Ψ) dωΨ

where E = dΦ
dA is the irradiance, i.e. the incident radiant power on a surface per unit surface area,

and Nx is the normal to the surface at x.

3

Figure 2: Illustration of radiometric quantities

2.1.2 The rendering equation

Now we have the necessary tools to understand the theoretical formulation of light transport simula-
tion and the rendering equation. This equation was first introduced by Kajiya in [24]. The equation
states that the radiance at a point x along a direction Θ is equal to the radiance Le emitted at
x towards Θ plus the radiance Lr reflected at x towards Θ. Intuitively, the reflected radiance can
be seen as the integral of the radiance arriving at x from every direction, weighted by the BRDF
between the incident direction and Θ.

The rendering equation comes in two main formulations, the hemispherical and area formula-
tions. They only differ on the expression of the reflected radiance. In the former, reflected radiance
is expressed as an integral over the unit hemisphere Ωx at the surface point x, while in the latter it
is an integral over the set A of surfaces in the scene.

The hemispherical formulation of the rendering equation can be written as follows:

L(x→ Θ) = Le(x→ Θ) + Lr(x→ Θ);

L(x→ Θ) = Le(x→ Θ) +

∫
Ωx

fr(x,Ψ→ Θ)L(x← Ψ) cos(Nx,Ψ) dωΨ;

L(x→ Θ) = Le(x→ Θ) +

∫
Ωx

fr(x,Ψ→ Θ)L(r(x,Ψ)→ −Ψ) cos(Nx,Ψ) dωΨ.

The ray-casting function r(x,Ψ) returns the point on the closest visible object along a ray
starting at x in the Ψ direction. The invariance of radiance along straight paths gives us
L(x← Ψ) = L(r(x,Ψ)→ −Ψ). This gives us a recursive equation of the exitant radiance L(· → ·).
The BRDF and the emitted radiance are specified in the scene description. We consider that emitted
radiance is exclusively non-zero for light sources.

The area formulation is the following:

L(x→ Θ) = Le(x→ Θ) +

∫
A
fr(x,Ψ→ Θ)L(r(x,Ψ)→ −Ψ)V (x, y)G(x, y) dAy

where the visibility term V (x, y) is non-zero if x and y are mutually visible, and the geometry term
G(x, y) depends on the geometry of the scene.

4

2.1.3 Participating media

The previous equations depend on the invariance of radiance along straight paths. This property
derives from the assumption that the light in the scene travels in a vacuum. Participating media
interact with light passing through them in different ways. If the scene contains a participating
medium, the previous equations are no longer valid. This section gives a quick introduction to
the properties of participating media in light transport and explains how radiance decreases along
straight paths due to attenuation phenomena.

Interactions with participating media come in two types: given a light ray traversing the medium,
some interactions contribute to the radiance it carries, and some reduce it. Radiance can be lost
either through absorption or out-scattering. Absorption occurs when the radiance carried by the
ray is absorbed by the particles composing the medium and transformed into other forms of energy,
such as heat. Out-scattering happens when the radiance carried by the ray is scattered in different
directions by the particles. On the other hand, emission and in-scattering increase the radiance
of the ray. The medium can contain emissive particles that increase the radiance of a ray passing
through it. Also, the radiance lost to out-scattering can contribute to other rays passing through
the medium, thus increasing their radiance by in-scattering. These four interactions are illustrated
in figure 3. We only need to consider attenuation phenomena for the purpose of this report. For
this reason, we will ignore emission and in-scattering in the rest of this section.

Figure 3: Volume scattering processes

The frequency and the impact of these phenomena are described by a few physical quantities.
Absorption is described by the medium’s absorption cross section σa(p, ω) [m−1], representing the
probability that light is absorbed per unit distance traveled in the medium. Out-scattering is de-
scribed by the scattering coefficient σs(p, ω) [m−1], representing the probability of an out-scattering
event happening per unit distance. Usually, these two attenuation phenomena are described by
the attenuation factor σt(p, ω) = σa + σs, or the mean free path 1/σt which represents the average
distance that a ray travels in the medium without interacting with it. These coefficients depend on
the position inside the medium and the direction of propagation of the light.

The attenuation of radiance along a ray at a medium point p in a direction ω along a differential

5

length dt is given by the following differential equation:

dL(p→ ω)

dt
= −σt · L(p← −ω).

The solution to this equation involves the beam transmittance Tr(p → p′) which represents the
fraction of radiance transmitted between two medium points p and p′:

Tr(p→ p′) = exp(−
∫ d

0
σt(p+ tω̂, ω) dt)

where ω̂ is the normalised direction from p to p′, and d the distance between them. This factor
describes how radiance is attenuated along straight path inside of a participating medium:

L(p′ ← −ω) = Tr(p→ p′) · L(p→ ω).

Finally, volume scattering inside a participating medium is described by the phase function
ρ(p,Θ→ Ψ), similar to the BRDF fr(x,Θ↔ Ψ) for surface scattering.

2.2 Monte Carlo path tracing

In this section we will explain in detail how the path tracing algorithm works. The radiance arriving
from the scene to the eye of the observer through a specific pixel will determine the value of that
pixel. Then, by solving the rendering equation to calculate the value of that radiance, we can
obtain the colour of every pixel in the final image. To solve the rendering equation, we need a way
to compute integrals. This section briefly states the principles behind Monte Carlo methods to then
explain how path tracing works and finally describe what next-event estimation is.

2.2.1 Monte Carlo integration

Let us take a function f over a domain Ω and I the integral to compute. Monte Carlo integration
approaches the integral with an estimator 〈I〉 computed from samples (xi) taken over the integration
domain, each with probability pΩ(xi).

I =

∫
Ω
f(x)dx 〈I〉 =

1

N

N∑
i=1

f(xn)

pΩ(xn)

E[〈I〉] = I V[〈I〉] =
1

N

∫
Ω

[
f(x)

p(x)
− I
]2

pΩ(x) dx

As the number of samples N increases, 〈I〉 converges towards I since the integral to compute is
its expected value. Moreover, the error in the estimator is proportional to its standard deviation and
decreases as

√
N . Monte Carlo integration works independently of the dimension of the integration

domain, unlike quadrature methods whose complexity scales with dimension.
To compute the lighting integrals, we just need a sampling strategy over the integration do-

mains, which will be either hemispheres or surfaces. In practice, intelligent sampling of the domain
accelerates the convergence of the estimator.

6

2.2.2 Simple Monte Carlo path tracing

In this section we present the simplest version of Monte Carlo path tracing by putting together the
different concepts and tools introduced in the previous sections.

Algorithm This path tracing algorithm uses the hemispherical formulation of the rendering equa-
tion. Path tracing constructs light paths recursively as shown in figure 4. First, the algorithm casts
a ray from the eye of the observer through a pixel. Then it computes the intersection of the ray
with the scene. Finally, a direction is sampled over the hemisphere and a new ray is cast from the
intersection point in that direction. At each bounce of the light path, the emitted radiance is added
to the contribution of the path, and the radiance carried by the rest of the path is weighted by the
BRDF. Path tracing stops after a certain number of bounces or when the contribution of future
bounces drops below a fixed threshold.

Figure 4: Path tracing algorithm

The number of samples per pixel (spp) is a parameter of the algorithm representing the number
of rays cast through each pixel. A higher number of samples creates a clear image at a larger
computational cost, while a lower number returns noisy images with a shorter execution time as
illustrated in figure 5.

Drawbacks For the radiance of a path to be non-zero, it needs to hit a light source. Since lights
occupy only a small fraction of the surfaces in the scene, most rays will not contribute to the final
image. This algorithm produces very noisy images for this reason. Increasing the number of samples
very slowly improves the render. Therefore, this version of the algorithm is inefficient and rarely
used in practice.

2.2.3 Next-event estimation

Principle A more efficient way to compute the radiance separates the contribution of direct
illumination and indirect illumination. Direct illumination is the light that arrives at a surface

7

(a) 1 spp (0.7 s) (b) 32 spp (21 s) (c) 256 spp (3 min) (d) 1024 spp (12.4 min)

Figure 5: Comparison of a car rendered with path tracing at different spp, taken from N.
Holzschuch’s website.

point directly from the light sources in the scene. Indirect illumination is the light that bounces at
least once in the scene before arriving to the surface point. The rendering equation states that the
exitant radiance at x along Θ is the sum of the emitted radiance at x along Θ and the radiance
reflected at x along Θ. We can split the reflected term into direct and indirect contribution in the
following way:

L(x→ Θ) = Le(x→ Θ) + Lr(x→ Θ)

Lr(x→ Θ) = Ldirect(x→ Θ) + Lindirect(x→ Θ)

Ldirect(x→ Θ) =

∫
ALS

fr(x,
−→xy → Θ)Le(y → −→yx)V (x, y)G(x, y) dAy

Lindirect(x→ Θ) =

∫
Ωx

fr(x,Ψ→ Θ)Lr(r(x,Ψ)→ −Ψ) cos(Nx,Ψ) dωΨ

where ALS is the combined area of the light sources in the scene and y is a point on a light source.

Algorithm The direct component of reflected radiance is computed by explicitly connecting each
intersection point of the light path with the scene to the light sources. At each bounce, a sample
is taken on the surface of the light source and a ray is cast from the interaction point towards
the sample. Finding the connection between these points is called next-event estimation (NEE).
Indirect illumination is then computed as in regular path tracing, by sampling a direction over the
hemisphere and casting a ray along that direction. With this technique, almost every path will
have a non-zero contribution, since each intersection point is deterministically connected to the
light sources. For this reason, path tracing with NEE produces much clearer renders with the same
number of samples at an increased computational cost.

Issues NEE breaks down when there is no direct line of sight between the surface point and the
light sample. This happens when an object stands between these two points. In that case, the light
sample does not contribute directly to the illumination of the surface point, since no connection
between them can be found. This situation is illustrated in figure 6.

Even without direct line of sight, there are specific situations where NEE is still possible, as
seen in figure 7. In the first situation, paths between the point and the light are blocked by a
transparent object. In the second situation, the light is only visible from the point after reflection

8

https://maverick.inria.fr/Members/Nicolas.Holzschuch/Comparison/
https://maverick.inria.fr/Members/Nicolas.Holzschuch/Comparison/

(a) Unobstructed line of sight

Opaque

(b) Obstructed line of sight

Figure 6: Regular NEE breaks down with no direct line of sight

on a mirror. Since refraction and reflection obey Snell’s laws, it is possible to trace paths towards
the light through these obstacles.

Transparent

(a) With a transparent object

Opaque

Mirror

(b) With a mirror

Figure 7: NEE extended to refractive interfaces and reflective surfaces

Unfortunately, finding these paths is no easy task. For example, there is no guarantee that a ray
cast from the surface point towards a transparent interface will be refracted exactly in the direction
of the light. In the following section, we explain how advanced NEE algorithms manage to find
these complicated paths.

3 State of the art

This section presents two different algorithms extending next-event estimation to more complex
situations involving refractive interfaces and reflective surfaces. These two algorithms are global
NEE and manifold NEE, respectively published by Walter et al. [36] in 2009 and Hanika et al. [16]
in 2015.

9

3.1 Global next-event estimation (GNEE)

3.1.1 Single scattering through a refractive interface

Walter et al. [36] propose an algorithm for NEE through a single refractive interface. We consider
a translucent object filled with a homogeneous participating medium of constant refractive index
η, whose boundary is a refractive interface represented by a triangle mesh with interpolated vertex
normals. Given a path passing through the translucent object and a sample V on the path inside
the object, we want to find all rays connecting the sample to a light source L through the interface
as shown in figure 8. This means finding every point P on the interface such that LPV is a valid
refracted path from the light to the sample. Then we can compute the contribution of such paths
to the illumination at V.

Figure 8: Single scattering through a refractive interface

3.1.2 Half-vector formulation

Refraction through an interface between media of different indices of refraction obeys Snell’s law.
This law can be reformulated as a constraint on the refractive half-vector Ĥ introduced by Walter
et al. [35]. Since the mesh triangles have shading normals N̂s different from their geometric normals
N̂g, Snell’s law must be applied to the shading normals. The definition of the half-vector and the
refraction constraint function f are given in figure 9.

The formulation follows the convention that the half-vector and the shading normal have opposite
directions, with the half-vector pointing towards the medium. Finding a point P on the boundary
such that the path LPV satisfies Snell’s law is then equivalent to solving for the roots of the
constraint function f(P) = 0. While the article only gives examples for refractive interfaces, the
exact same approach works for specular interfaces. The half-vector formulation just needs to be
modified to take into account reflection instead of refraction.

3.1.3 Algorithm

To compute the contribution of this kind of path, the algorithm places several sample points V
along the ray inside the medium. For each sample V, it finds all refracted paths connecting V to
the light source L. Then, it computes and sums their contributions to the radiance along the path.
These paths are found by iterating over every triangle in the mesh. Solving for the roots of f over

10

ω̂V =
V −P

‖V −P‖

ω̂L =
L−P

‖L−P‖

Ĥ =
ηω̂V + ω̂L
‖ηω̂V + ω̂L‖

f(P) = Ĥ + N̂s.

Figure 9: Refractive half-vector formulation

a triangle gives us all valid paths passing through that triangle. The roots are computed with a 2D
Newton-Raphson method over its surface.

Instead of searching over the whole surface of the triangle, the authors use a split-and-prune
approach. They recursively split the triangle into four smaller subtriangles and prune those that
cannot contain a solution, i.e. where the bounding cones for −Ĥ and N̂s do not overlap. Then,
the Newton-Raphson method is applied to the subtriangles. The subdivision stops according to a
fast heuristic which stops splitting triangles when the sum of the cone angles for the two vectors
is smaller than thirty degrees. This heuristic is not exact, but works well in practice. The authors
also provide a rigorous stopping condition which is much more expensive to compute.

For small meshes, the algorithm can be applied to every triangle but this solution does not scale
well with the size of the mesh. For large meshes, whole groups of triangles that cannot contain a
solution are pruned according to three tests. These tests rely on an additional data structure to
obtain information about the position and normals of the triangles in the scene. The sidedness test
checks whether L and V are on the correct side of the shading normal N̂s. The spindle test is
based on the fact that refraction cannot bend light by more than a straight angle, and often less for
small values of η. If we think of the segment LV as the chord of a circle, the surface of revolution
produced by the arc subtended by that chord contains all triangles where a solution can exist. The
cone overlap test is similar to the one used in the split-and-prune phase, but position is bounded
by a 3D box instead of a 2D triangle. If any of these tests fail for a given triangle, then it can be
discarded since no refracted path can go through it.

This algorithm works well for simple scenes, but the authors report that in complex scenes the
number of samples along each camera ray has to be very high to obtain a clear image. Also, some
samples had extremely high values and had to be clamped to prevent noise in the final image.

3.1.4 Results

In figure 10 we see a comparison of a scene rendered with four different algorithms. Regular path
tracing renders a very noisy but physically-accurate result after 1.4 hours of rendering and 32768
samples per pixel. NEE by approximating refracted paths by straight lines does not manage to
capture the intricate details of the scene. The images created with photon mapping and GNEE in
this figure took roughly the same time to compute. Compared to photon mapping, GNEE captures

11

finer details on the inside of the sphere and uses far less memory.

Figure 10: Equal time comparison (one minute) renders of a back lit bumpy sphere created with
different algorithms, taken from [36].

3.2 Manifold next-event estimation (MNEE)

3.2.1 Rendering of specular-diffuse-specular paths

Hanika et al. [16] propose an algorithm for a related but slightly different problem. They aim
to efficiently render specular-diffuse-specular (SDS) paths. These paths contain a diffuse vertex
between two specular scattering events (such as reflection or refraction) as shown in figure 11. In
order to efficiently sample these paths, the authors propose another next-event estimation algorithm.
While the previous algorithm only handles refraction through a single perfect refractive interface,
this algorithm works on multiple layers of potentially rough interfaces.

Figure 11: SDS path with specular scattering events at Si, So and a diffuse scattering event at D

12

3.2.2 Manifold exploration

Manifold next-event estimation is based on the manifold exploration (ME) technique introduced by
Jakob et al. [23]. If we consider a path of length k as a sequence (x1, . . . ,xk) of k vertices in the
scene, we can denote the space of paths of length k by Ωk. Path space Ω =

⋃
k Ωk is then the set

of paths of every possible length. Solving the rendering equation by path tracing is reformulated
by Veach [33] as solving a rendering equation where the integration domain is path space. Instead
of taking samples over a hemisphere or a surface, the samples are light paths themselves. The
contribution of each one of those sampled paths is computed and used to create the final image.
Given an interesting path in the scene, ME is used to explore other paths close to it in path space.

In a path (x1, . . . ,xn), refraction at a vertex xi can be encoded as a constraint on the half-
vector Ĥ at that vertex depending only on the surrounding vertices xi−1 and xi+1. This constraint
is represented in the previous section by the function f . Similarly, we can define a constraint function
C encoding these specular constraints for the whole path such that the path is valid only if it belongs
to {x̄ = (x1, . . . ,xn) ∈ Ω s.t. C(x̄) = 0}. Therefore the constraint function C implicitly defines a
manifold called a specular manifold. This is a lower-dimensional space of valid paths embedded in
path space.

Given a path on this specular manifold, ME allows us to locally explore the manifold around
that path. If an endpoint of this path is modified, a predictor/corrector algorithm first propagates
the perturbation to the rest of the path by moving in the tangent space to the manifold (prediction).
This produces a similar path that is no longer on the manifold. This path is then projected back
onto the manifold by ray tracing from the other endpoint so that it satisfies the specular constraints
and all vertices land on the geometry (correction). Figure 12 illustrates this algorithm in scene
space and path space.

Figure 12: Image taken from [23], (a) shows an iteration of the algorithm in scene space where an
endpoint of the path is altered, (b) shows the same iteration in path space

In other words, it is possible to alter a valid path and obtain through successive iterations
a similar valid path taking into account that alteration. This method behaves like the Newton-
Raphson method and exhibits quadratic convergence when near the solution.

3.2.3 Algorithm

MNEE uses a similar approach to manifold exploration but represents paths with half-vectors instead
of vertices. First, a straight seed ray is shot from the diffuse vertex towards the light source, ignoring

13

specular events. Then, a set of target half-vectors verifying the specular constraints are chosen.
Finally the predictor/corrector algorithm creates a valid path from the seed path, getting closer to
the target constraints with each iteration. This is shown in figure 13. MNEE can be applied to
reflective surfaces by using reflection constraints instead of refraction in the function C for some
vertices in the path.

Seed path

Valid path

MNEE

Figure 13: MNEE algorithm

The constraint function C for a path of length n with p specular vertices is represented as a block
tridiagonal matrix of size 2n by 2p. The algorithm needs to calculate this matrix and its inverse
to find a valid path, which is computationally expensive. Also, the convergence of the algorithm
is quadratic only as long as the seed path is close to the solution. If the seed path is too far off,
the algorithm may not converge in a reasonable number of iterations. The authors suggest that
a maximum number of 15 iterations works well in practice. In a difficult scene presented in the
article, a maximum of 50 iterations leads to a rate of successful convergence of 59%. In general,
MNEE is very sensitive to the handling of geometry by the renderer and numerical stability, but
produces very good results in the right conditions.

3.2.4 Results

In figure 10 we see an equal time comparison of a scene rendered with four different algorithms in
one minute. As expected, path tracing renders a very noisy image at a very high cost. Regular
NEE accurately renders the plane but struggles to render the droplet to which this technique does
not apply. MNEE creates a very clear render in the same amount of time, except for some noise
that can be seen in the red and blue inlets.

3.3 Discussion

In this section we have presented two different next-event estimation methods: GNEE and MNEE.
GNEE finds all paths refracted through an interface contributing to the radiance carried along a
ray inside a participating medium. The paths are found by encoding the refraction law with a
constraint function depending on a point on the boundary. Then a 2D Newton-Raphson method
is used to find the roots of this function over the whole boundary, excluding triangles where no
solutions can exist thanks to pruning tests. This method only handles perfect refractive surfaces
and single scattering, but it returns better results than regular path tracing in a reasonable time.

14

Figure 14: Equal time comparison (one minute) renders of a water droplet on a flat plane created
with different algorithms, taken from [16].

MNEE solves single scattering through an interface to efficiently render specular-diffuse-specular
paths, which are notoriously difficult to sample. Their method finds a refracted path between the
diffuse vertex and the light sample starting from a seed path. This seed path is then refined
by a predictor/corrector algorithm based on manifold exploration that converges towards a valid
refracted path. This algorithm behaves as a 2D Newton-Raphson method in terms of complexity.
MNEE is designed to handle rough scattering through multiple layers, but works better in practice
on single scattering through a single low-roughness interface. The convergence of the algorithm is
very sensitive to the geometry of the scene, and it requires heavy computation on matrices.

Both of these algorithms can also be extended to deal with reflection instead of refraction, but
the articles mostly provide examples of the refractive case. In summary, these algorithms showcase a
range of different methods each used in different contexts, which proves the versatility and usefulness
of NEE in many situations arising naturally in path tracing.

In the previous sections we have explained the importance of next-event estimation in path
tracing algorithms by introducing the theoretical framework of light transport theory on which
they rely. Next-event estimation accelerates convergence in a wide variety of situations, but fails
when there is no direct line of sight to the light sources. We have presented two algorithms that
extend NEE to work through refractive interfaces and with reflective surfaces. These algorithms
successfully render complex situations where regular path tracing struggles to create a clear image,
but NEE increases the computational cost of the algorithm for the same number of samples. The
goal of this internship is to develop a faster next-event estimation technique for these situations.

4 Overview

4.1 Motivation

To understand the idea behind the new NEE technique, let us restate the problem first and sum-
marise the previous approaches. Given a point V inside a medium and a point L on a light source
separated by a refractive interface, we want to find a point P on the interface such that LPV is
a valid refracted path. Both previously presented methods rely on finding the roots of a function

15

defined over the two-dimensional interface. The search for the roots is slow and does not always
converge, as shown by Hanika et al. [16] with convergence rates as low as 59% in difficult examples.
Also, the constraint is non-linear in its parameters due to normalisation, making it much harder to
optimise. This internship aims to reduce the dimension of the search space by taking advantage of
the coplanarity of the incident and outgoing rays with the shading normal at the interaction point.

Reflection and refraction obey the law of reflection and Snell’s law respectively, each consisting
of two parts. The first part states that the incident ray, the outgoing ray and the normal to the
surface are coplanar. The second part then states a relationship between the angles of incidence
and reflection or refraction. In both GNEE and MNEE, these conditions are encoded together in
the constraint function whose roots we want to find. We aim to improve the performance of NEE
by using both conditions separately.

Coplanarity between
−−→
VP,

−→
PL and the shading normal at P is a necessary condition for f(P) to

be zero. Since these three vectors are linear in P before normalisation, the coplanarity condition
can be written as a quadratic form in P. This quadratic form defines a conic section over the plane
containing each mesh triangle. The boundary point of any valid path will be on this curve. This
reduces the dimension of the space search to one dimension. This condition can also be used for
pruning triangles where a solution cannot exist. Indeed, if the conic section does not intersect a
triangle, then it cannot contain a solution and it can be safely ignored.

By using coplanarity to reduce the dimensionality of the search space and prune non-relevant
triangles, we hope to accelerate NEE computation and improve over the results of the previous
methods.

4.2 Algorithm overview

Let us consider a scene containing a participating medium with index of refraction η enclosed in a
refractive interface represented as a triangle mesh with interpolated vertex shading normals. Given
a sample V in the medium and a sample L on a light source across the refractive interface, we want
to find every point P on the interface such that LPV is a valid refracted light path. Our algorithm
finds solutions on one triangle at a time, and it is applied to every triangle in the mesh. It also
provides an additional culling criterion that allows us to discard triangles that cannot contain a
solution early on in the algorithm.

Refraction can be encoded by an equation of the form f(P) = 0, where the refraction constraint
function f depends on a point P on the plane of the considered triangle. Snell’s law also states that
the incident ray, the outgoing ray and the shading normal at the intersection point must be coplanar.
This constraint defines a coplanarity conic section in the triangle plane, on which all solutions to
the refraction problem necessarily lie. This restricts the search space to a one-dimensional curve on
the triangle plane.

The refraction constraint can be reformulated as a univariate polynomial on the position of a
point over any line in the plane. By approximating the coplanarity conic by its chords, we can then
define the refraction constraint over this approximation. A single chord is a poor approximation
of a conic section. By recursively splitting chords whose distance to the conic is larger than a
user-specified threshold, we can progressively refine the approximation.

Then, for each one of these chords, we compute the corresponding refraction constraint and find
its roots over the chord. Real-root isolation methods provide information to Newton’s method on
the number of roots of the function and their location on the chord. Once the roots have been

16

found, they are projected onto the conic section for accuracy. Finally, once all solutions have been
found, we compute the contribution of these refracted light paths to the illumination of the scene.

The algorithm can be split in three different parts, which will structure the contribution. The
first part discusses every aspect related to reducing the dimensionality of the problem. The second
part then explains how to find the solutions to the problem using its new formulation. Finally, the
third describes how the contribution of the newfound refracted light paths is computed.

5 Dimensionality reduction

The first stage of the algorithm consists in reducing the dimensionality of the problem. In order
to do this, we first show that the coplanarity constraint provided by Snell’s law can be represented
as a conic section over the triangle plane. Then, we define the refraction constraint as a univariate
polynomial on the position of a point on a straight line, successfully reducing the dimensionality of
the problem.

5.1 Refraction constraint function

We first formally define the parameters of the problem, and formulate the refraction problem as a
function of these parameters. We provide a geometric visualisation to help developing an intuition
about the complexity of the problem.

Let us consider a scene containing a light source and a participating medium enclosed in a
refractive interface represented as a triangle mesh with interpolated normals. Let us denote the
medium sample by V and the light sample by L. For the algorithm, we will consider a single
triangle defined by three vertices P0, P1 and P2, with corresponding normalised vertex shading
normals n̂0, n̂1 and n̂2. In the following, ns(P) will denote the interpolated shading normal at
P, and n̂g the normalised geometric normal of the triangle. Finally, η will denote the index of
refraction of the medium. The main parameters are illustrated in figure 15.

Figure 15: Illustration of the scene

Before introducing the algorithm, we need to define the problem we intend to solve. Snell’s
law of refraction can be expressed as a function of the scene parameters defined above by replacing
the sines by the corresponding cross products. The previous approach from Walter et al. [36]

17

used the half-vector formulation to encode the refraction constraint. This formulation included
the coplanarity constraint. Since we are treating coplanarity separately, using a scalar constraint
function will result in an easier root-finding process.

η sin θi = sin θo

⇔ η

∥∥(V −P) ∧ ns(P)
∥∥

‖V −P‖
∥∥ns(P)

∥∥ =

∥∥(L−P) ∧ ns(P)
∥∥

‖L−P‖
∥∥ns(P)

∥∥
⇔ η‖L−P‖

∥∥(V −P) ∧ ns(P)
∥∥−‖V −P‖

∥∥(L−P) ∧ ns(P)
∥∥ = 0

⇔ η2‖L−P‖2
∥∥(V −P) ∧ ns(P)

∥∥2 −‖V −P‖2
∥∥(L−P) ∧ ns(P)

∥∥2
= 0

⇔ f(P) = 0.

The problem of finding all valid paths refracted through a triangle according to Snell’s law is
equivalent to finding the roots of the constraint function f over the triangle such that

−−→
PV,

−→
PL

and ns are coplanar. A point P on the triangle can be represented by two of its barycentric
coordinates (u, v, w). Then the‖X−P‖2 terms are quadratic polynomials, and every coordinate of
the vectors (X − P) ∧ ns(P) is a quadratic polynomial, so the squared norm of these vectors are
quartic polynomials. The constraint function is then a bivariate sixth degree polynomial in u and v.
Finding the roots of a polynomial function with numerical methods is often easier and faster than
for other functions, which accounts for the squaring step in the previous calculation.

Snell’s law also states that if P is a solution to our problem, then
−−→
PV,

−→
PL and ns(P) are

coplanar. Coplanarity is a necessary condition for refraction, so the solutions to our problem will
all lie in the set of points P satisfying the coplanarity constraint. Moreover, this constraint defines
a conic section over the triangle plane. Our approach consists in using this condition to reduce
the dimensionality of the problem in order to make the algorithm faster and more stable than the
previous bidimensional methods.

By plotting the constraint polynomial zero set and the coplanarity conic in the triangle plane,
we can get a better idea of the geometric complexity of the problem. The images in figure 16
were obtained by modifying the values of the vertex shading normals n̂0, n̂1 and n̂2 with all other
parameters fixed. The goal of our algorithm is to find the intersection of the red curve and the
blue curve, i.e. the constraint function zero set and the coplanarity curve. As we can see, slight
modifications to the parameters of the scene can have huge repercussions in the considered curves.
Although the geometric properties of conic sections are well known, there is little information on
the properties of the zero set of bivariate polynomials.

This reasoning is also valid for the law of reflection. Let us consider for a moment that L
and V lie on the same side of the triangle, and that our goal is to find reflected paths LPV such
that P belongs to the triangle. The law of reflection states that the incidence angle θi is equal
to the reflection angle θo. Since these angles belong to the interval [0, π2] and the sine function is
bijective over the interval, this is equivalent to saying that sin θi = sin θo. This allows us to define
the reflection constraint as a function of P by setting η to one in the refraction constraint function
f(P). Since the coplanarity condition is also necessary to reflection, the whole next-event estimation
algorithm can also be applied to reflection. The reflection version needs more sophisticated culling
tests for it to scale to large scenes, since the algorithm would have to be applied to every reflective
surface in the scene. In the refraction case, we only need to apply the algorithm to the refractive
interface. In the rest of the report, we will exclusively refer to the refraction case.

18

Figure 16: Geometric representation of the problem in the triangle plane. The zero set of the
constraint function is plotted in red and the coplanarity conic is plotted in blue. The goal of the
algorithm is to find the intersection of these two curves.

5.2 Coplanarity conic section

As we have seen, the complexity of the problem in its natural form pushes us to find a simplified
form of the problem. Since coplanarity is a necessary condition for refraction, we need only look at
the roots of the constraint function over the one-dimensional coplanarity conic. This simplifies the
problem by allowing us to use the well-known geometric properties of conic sections.

5.2.1 Conic equation

Our goal in this section is to reformulate the coplanarity constraint of Snell’s law as an equation of
the form Au2 +Buv+Cv2 +Du+Ev+ F = 0, where the coefficients A through F depend on the
parameters of the problem and (u, v) are the barycentric coordinates of P.

A point P on the triangle plane and the shading normal ns(P) at that point can be expressed
as a function of the triangle’s barycentric coordinates (u, v). These coordinates are illustrated in
figure 17. They can also be interpreted as the ratio of the area of each subtriangle to the area of
the larger triangle.{

P(u, v) = P0 + u · p10 + v · p20, where p10 = P1 −P0 and p20 = P2 −P0

ns(u, v) = n̂0 + u · n10 + v · n20, where n10 = n̂1 − n̂0 and n20 = n̂2 − n̂0

P(u, v) = P̄ ·

uv
1

 and ns(a, b) = N̄ ·

uv
1

 ; where P̄ =

 | | |
p10 p20 P0

| | |

 and N̄ =

 | | |
n10 n20 n̂0

| | |

 .
In barycentric space, P0, P1 and P2 respectively occupy the coordinates (0, 0), (1, 0) and (0, 1)

of the plane, allowing us to work in a space independent from the shape of the triangle itself.
Three vectors x0, x1 and x2 are coplanar if and only if x0 · x1 ∧ x2 = 0. If s = L −V, then

19

Figure 17: Barycentric coordinates

ns(P),
−→
PL and

−−→
PV are coplanar if and only if:

ns(u, v) · [(L−P(u, v)) ∧ (V −P(u, v))] = 0

⇔ ns(u, v) · (L ∧V − L ∧P(u, v)−P(u, v) ∧V) = 0

⇔ ns(u, v) · L ∧V + ns(u, v) ·P(u, v) ∧ (L−V) = 0

⇔ [n10 · p10 ∧ s] · u2 +

[n10 · p20 ∧ s + n20 · p10 ∧ s] · uv +

[n20 · p20 ∧ s] · v2 +

[n̂0 · p10 ∧ s + n10 ·P0 ∧ s + n10 · L ∧V] · u+

[n̂0 · p20 ∧ s + n20 ·P0 ∧ s + n20 · L ∧V] · v +

[n̂0 ·P0 ∧ s + n̂0 · L ∧V] = 0

⇔ Q(u, v) = Au2 +Buv + Cv2 +Du+ Ev + F = 0.

This defines a conic section in the barycentric space of the triangle. The conic section necessarily
contains all the solution points P such that LPV is a valid light path refracted through the triangle.
This provides us with a one-dimensional search space for Newton’s method to operate on.

5.2.2 Conic classification

Conic sections come in different types: they can be ellipses, parabolas or hyperbolas, either degen-
erate or non-degenerate. Some geometrical properties of the conic depend on its type. For this
reason it is important that we identify the type of the coplanarity conic and adapt the algorithm to
the type at hand.

Figure 18 summarises all of the different possible cases and the classification criteria. All of the
cases are illustrated in figure 19. The conic section can be classified by looking at the determinant
of the following matrices:

AQ =

 A B/2 D/2
B/2 C E/2
D/2 E/2 F

 ; A33 =

[
A B/2
B/2 C

]
.

20

|AQ| 6= 0 |AQ| = 0

|A33| < 0 Hyperbola Intersecting lines
|A33| = 0 Parabola Parallel lines†

|A33| > 0 Ellipse∗ Single point

(∗)

{
(A+ C)|AQ| < 0: real ellipse
(A+ C)|AQ| > 0: imaginary ellipse

; (†)

D2 + E2 > 4(A+ C)F : real and distinct
D2 + E2 = 4(A+ C)F : real and coincident
D2 + E2 < 4(A+ C)F : non-existent in R

Figure 18: Conic section classification, taken from [38, 39]

Figure 19: Illustration of the different types of conic sections and their degenerate counterparts

In practice, we will only consider hyperbolas and ellipses. A conic section can only be degenerate
or a parabola if one of the determinants is equal to zero. Compared to the other possibilities, these
pathological cases are extremely infrequent. The current implementation of the algorithm does
not take them into account: if the coplanarity conic for a triangle is singular, the triangle is then
discarded. From now on, we will consider that the conic section is either a hyperbola or an ellipse,
also called central conics. Pathological cases arising from similar situations will be discussed in
section 8.2.

5.2.3 Triangle-conic intersection

For each triangle, our algorithm only looks for solutions lying inside of the triangle. Now that we
have the equation of the conic section, we must find which parts of it are inside of the triangle. The
easiest way of doing this is by computing the intersections between the triangle and the conic.

The intersection points are given by the roots in [0, 1] interval of the following quadratic equa-

21

tions: Q(u, 0) = 0, Q(0, v) = 0 and Q(u, 1 − u) = 0 with u, v ∈ R, where Q is the quadratic form
defining the conic section. If no roots are found, then the conic does not intersect the border of the
triangle. This only happens when the conic is either fully inside or fully outside of the triangle. By
taking any point on the conic and testing whether it lies inside of the triangle, this provides a very
fast method for culling triangles that cannot contain any solution to the problem.

Since each one of these equations can have up to two distinct real roots, a conic section can
intersect the triangle at most six times. Note that it is theoretically possible that these equations
have double roots. A double root means that the conic section is tangent to the corresponding side
of the triangle. As for the parabolic and degenerate cases, that this is an infrequent pathological
case not currently handled by the implementation.

Discounting the double root case, there is always an even number of intersections between the
conic section and the triangle. Still, the triangle and the conic section can intersect in a multitude
of ways. Assuming that the conic is never tangent to the triangle, a complete categorisation of the
possible cases is given in figure 20. Note that for the hyperbola, it is important to consider the
number of intersections of each branch. From a combinatorial point of view, the only missing case
in this classification is a hyperbola intersecting the triangle four times with one branch and twice
with the other branch. A sketch of the proof that this case is impossible is given in appendix B.

Figure 20: Triangle-conic intersection classification: a triangle and an ellipse can have zero inter-
sections (ellipse completely inside or outside the triangle), two intersections, four intersections and
six intersections; a triangle and a hyperbola can have zero intersections, two intersections, four
intersections (two on each branch or all four on the same branch) and six intersections all on the
same branch

5.2.4 Intersection pairs

Depending on the configuration of the triangle and the conic, there can be up to three conic arcs
lying inside of the triangle. Each one of these arcs is delimited by a pair of intersection points, but
the list of these points does not tell us directly which parts of the conic lie inside the triangle.The
construction of these pairs of points is not trivial and depends on the exact configuration of the

22

triangle and the conic. The explanation is divided depending on the number of intersections found
at the previous stage of the algorithm.

The implicit form Q(u, v) = 0 of the conic section is not appropriate when manipulating and
choosing points on the conic section. Instead, we use a parametric form of the conic, where each
point of the conic corresponds to a value of a parameter t. Trigonometric functions provide a
very simple parametrisation for circles and square hyperbolas, i.e. (cos t, sin t) and (± cosh t, sinh t)
respectively. By applying an affine transformation to the coplanarity conic, we can transform it
into its unit counterpart and compute the value of t. The details on how the affine transformation
is computed are explained in appendix A.

No intersection points If there is no intersection between the triangle and the conic, then the
triangle can be discarded except in the case where the ellipse is completely inside of the triangle.
This case can be simply detected by taking any point on the conic section and checking if it is inside
of the triangle

Two intersection points This is the easiest case to handle since we can only choose a single pair
of intersection points. These automatically delimit the conic arc inside the triangle.

Four and six intersection points This is the hardest case to handle, and it can happen in
multiple ways. The easiest to deal with is a hyperbola where each branch intersects the triangle
twice. The pairs of points can simply be created by pairing the intersection points lying on the
same branch together. The other cases are an ellipse intersecting the triangle four or six times, and
a hyperbola where a single branch intersects the triangle four or six times.

Given the list of the triangle-conic intersection points, we can compute the value of their re-
spective conic parameters. By sorting this list by increasing parameter value, each point in the
list is surrounded by two points contiguous to it on the conic section. In other words, by taking
two consecutive points in the list, there is no intersection point on the conic arc delimited by these
points. Note that the last and first intersection points in the list are considered as being consecutive
in the case of an ellipse.

Also, at each intersection point the curve crosses the border of the triangle, so on one side of
the border the conic lies inside of it and on the other side it lies outside of it. Then, given a pair of
consecutive points, if any point on the arc defined by these points lies inside of the triangle, then
the whole conic arc does.

Let us explain the method on an example: an ellipse with four intersection points [Q0,Q1,Q2,Q3]

sorted by increasing conic parameter as illustrated in figure 21. If Q̇0Q1 lies inside of the triangle,
then Q̇1Q2 lies outside the triangle, Q̇2Q3 lies inside, and Q̇3Q0 lies outside. If Q̇0Q1 laid outside,
then the result would be the opposite for every conic arc.

More generally, sorting the list by parameter value guarantees that the first two points being
an inside pair determines whether any pair of consecutive points in the list is an inside pair or not.
This method applies to any of the aforementioned triangle-conic configurations.

This concludes the part of the algorithm that consists in restricting the search space to a one-
dimensional space. The solutions we are looking for all lie on a conic arc inside of the triangle
delimited by a pair of points belonging to the border of the triangle and the coplanarity conic.

23

Figure 21: Four triangle-conic intersections

5.3 Dimensionality reduction

Now that the search space has been reduced as much as possible, we need to find a way to define the
refraction constraint function over this space. A conic arc can be approximated up to an arbitrary
precision by conic chords, i.e. line segments whose endpoints both lie on the conic. Our approach
is to define the constraint function over conic chords instead of conic arcs. If the approximation of
the arc by chords is sufficiently precise, due to the continuous nature of the problem, the roots of
the constraint function on the chord must necessarily be close to the roots on the conic arc.

5.3.1 Constraint over chords

Let Q0 and Q1 be points in barycentric space and Q(t) = (1−t)Q0 +tQ1 a point on the line passing
through these two points. By substituting (u, v) in the constraint function by the coordinates of
Q(t), we obtain the new formulation of the constraint as a function of the position t of a point Q(t)
on the line defined by Q0 and Q1. In the following, Q0 and Q1 are written in homogeneous form
and X is a placeholder for either V or L. P̄ and N̄ are those defined in section 5.2.1.

Q(t) = (1− t)Q0 + tQ1 = Q0 + t∆ = (u, v, 1)T , where ∆ = Q1 −Q0

P(t) = P̄ · (u, v, 1)T = P̄Q0 + tP̄∆ = Pc + tPt, where Pc = P̄Q0 and Pt = P̄∆

ns(t) = N̄ · (u, v, 1)T = N̄Q0 + tN̄∆ = nc + tnt, where nc = N̄Q0 and nt = N̄∆

gX(t) =
∥∥X−P(t)

∥∥2
=
∥∥(X−Pc)− tPt

∥∥2

= ‖X−Pc‖2 − 2t〈X−Pc,Pt〉+ t2‖Pt‖2

24

hX(t) =
∥∥ns(t) ∧ (X−P(t))

∥∥2
=
∥∥(nc + tnt) ∧ (X−Pc − tPt)

∥∥2

=
∥∥∥nc ∧ (X−Pc) + t[nt ∧ (X−Pc) + Pt ∧ nc] + t2Pt ∧ nt

∥∥∥2

=
∥∥nc ∧ (X−Pc)

∥∥2
+

2〈nc ∧ (X−Pc),nt ∧ (X−Pc) + Pt ∧ nc〉t+[∥∥nt ∧ (X−Pc) + Pt ∧ nc
∥∥2

+ 2〈nc ∧ (X−Pc),Pt ∧ nt〉
]
t2 +

2〈nt ∧ (X−Pc) + Pt ∧ nc,Pt ∧ nt〉t3 +

‖Pt ∧ nt‖2 t4

The constraint function is defined in terms of these factors as:

f(t) = η2 · gL(t) · hV(t)− gV(t) · hL(t).

Since gX is a quadratic polynomial, and hX is a quartic polynomial, their product is a sixth
degree polynomial. Therefore, f(t) is a sixth degree univariate polynomial in t. We will refer to these
polynomials as chord polynomials. This parametrisation successfully reduces the dimensionality of
the problem. Tests have shown that the coefficients of this polynomial can span multiple orders of
magnitude, going from 100 to 1010 for some triangles in our test scene. This may raise numerical
accuracy problems when manipulating chord polynomials.

Our original solution was to use the trigonometric parametrisation presented in appendix A.
Unfortunately, this substitution introduces circular or hyperbolic trigonometric functions into the
constraint function, which loses its polynomial form. Since the polynomial form of the problem is
very useful for numerical algorithms, we opted for the chord parametrisation instead.

Now remains the problem of approximating a conic arc by its chords and finding the roots of
the constraint function over them.

5.3.2 Chord approximation

The refraction problem formulation over straight lines has useful properties for numerical algorithms.
Unfortunately, since our search space consists of conic arcs, we need to find a way to approximate
them with straight lines. A conic arc can be approximated by the chord passing through the points
defining the arc. In most cases, this is a very poor approximation of a conic arc. Our approach
consists in recursively splitting this chord in two until the distance of every resulting chord to the
conic is smaller than a user-specified threshold.

For a given arc, the algorithm starts with the chord defined by its triangle-conic intersection pair.
The quality of the approximation is given by the maximum orthogonal distance between the chord
and the arc. Then, we compute the point on the arc maximising this distance. The two chords
defined by the original points and the new point provide a better approximation. This process
is illustrated in figure 22. The subdivision is repeated recursively until every chord is sufficiently
close to the conic arc it subtends. We only need a method to compute the point maximising the
orthogonal distance between the chord and the conic, and a way to compute this distance.

The point can be found by computing the conic parameters of the two points defining the chord,
taking their average and converting the resulting parameter to a point in barycentric space. Let us
prove that this method works. The point on the conic maximising the orthogonal distance to the

25

Figure 22: Chord subdivision algorithm: the successive chord approximations are drawn in blue,
the maximum distance between a chord and the conic arc is represented in red

chord is the point whose tangent is parallel to the chord. Since parallelism is preserved by affine
transformations, we only need to prove it for circles and unit hyperbolas.

The proof for hyperbolas and circles follows the same structure and reasoning. For this reason,
we will only prove it for a hyperbolic arc. Let us define a unit hyperbolic branch consisting of the
points X(t) = (cosh t, sinh t)T . Let a, b be two parameters corresponding to two points X(a),X(b)
on the branch defining a chord. Our goal is to find the parameter t such that the orthogonal distance
betweenX(t) and the chord is maximal. If we let ∆ = X(b)−X(a), we can define ∆⊥ = (∆y,−∆x)T

such that 〈∆,∆⊥〉 = 0. Then t is such that:

〈X′(t),∆⊥〉 = 0

⇔ sinh t(sinh b− sinh a) = cosh t(cosh b− cosh a)

⇔ (et − e−t)(eb − ea − e−b + e−a) = (et + e−t)(eb − ea + e−b − e−a)
⇔ et(2e−a − 2e−b) + e−t(2ea − 2eb) = 0

⇔ e2t =
ea − eb

e−b − e−a

⇔ e2t =
e

a+b
2 (e

a−b
2 − e

b−a
2)

e−
a+b
2 (e

a−b
2 − e

b−a
2)

⇔ e2t = ea+b

⇔ t =
a+ b

2

Finally, given a chord defined by the points Q0 and Q1, and a point Q on the arc Q̇0Q1, the
orthogonal distance between them is equal to ||

−−−→
Q1Q0 ∧

−−−→
QQ0||/||

−−−→
Q1Q0||.

In this section, we have taken Snell’s law of refraction and separately considered the relationship
between the angles of incidence and refraction, and the coplanarity condition on the shading normal,
the incident ray and the outgoing ray. From the first part of the law, we derived the constraint
function which we then expressed as a one-dimensional function of the position of a point on a line.
The second part of the law helped us restrict the search space for our algorithm to the intersection
between a conic section and a triangle. The approximation of this conic section by straight chords
allows us to unify these two parts and define the constraint function over the reduced search space.
The next part of the algorithm relies on this new formulation of the problem.

26

6 Finding refracted paths

In the last section, we reduced the problem to finding the roots of the chord polynomials defined
on the approximation of the conic arcs inside of the triangle. Given a specific chord polynomial, we
want to find all of its roots in the interval [0, 1]. Newton’s method provides an increasingly good
approximation of a single root if the function is sufficiently regular. If there are multiple roots in
the interval, Newton’s method will converge towards one of them. For this reason, we first need
information on the number and the location of the roots of the chord polynomial in [0, 1]. In this
section, we will explain how root-isolation algorithms can give us the necessary information to find
all of the roots of the chord polynomial with Newton’s method.

6.1 Real-root isolation algorithms

Finding the roots of a polynomial is a very frequent problem in numerical analysis. Polynomial func-
tions arise in many situations and their simplicity is often an advantage. The roots for polynomials
of degree up to four can be computed explicitly. Unfortunately, the Abel-Ruffini [1] theorem states
that there is no solution in radicals for arbitrary polynomials of degree five or higher. For this rea-
son, root-finding algorithms are usually iterative and compute an increasingly accurate estimation
of the roots of the polynomial.

Real-root isolation algorithms take a polynomial as their input and return a set of disjoint
intervals, each containing one and only one root of the polynomial, such that their union contains
all of the roots. They provide information not only about the number of roots of a polynomial, but
also their location, making them ideal for our algorithm. These algorithms come in two categories.
The earliest ones were based in Sturm’s theorem [32] proven by Sturm in 1829. The state-of-the art
real-root isolation algorithms mostly rely on Descartes’ rule of signs [10]. Sturm’s theorem provides
the exact number of roots of a polynomial in an interval, while Descartes’ rule only provides an
upper bound.

Both types of algorithm have the same computational complexity, but Descartes-based algo-
rithms have been shown to be faster than Sturm-based algorithms in practice. We present both
algorithms in this section, since one of them could have an advantage over the other for our use case,
but our initial implementation uses the Descartes-based algorithm. For this reason, the explanation
for the Descartes-based algorithm is more complete and thorough. Delving further in the numerical
algorithms literature could provide more insight on choosing the best algorithm for our purpose.

In our case, the real-root isolation algorithm is applied to the sixth degree chord polynomial
over [0, 1]. If the chord polynomial has no roots, the chord can be discarded, avoiding further
calculations. If the polynomial has roots in the interval, knowing their approximate location can
provide good initial guesses for Newton’s method. This section states both theorems and explains
the real-root isolation algorithms that build upon them.

These algorithms are intended for square-free polynomials with integer coefficients, but they
theoretically work with floating-point coefficients. A polynomial is square-free if it does not have
as a factor any square of a non-unit polynomial in its decomposition. In R[X], it is equivalent to
the polynomial being separable, i.e. having no repeated roots. Our implementation considers that
chord polynomials are always square-free, but there exist algorithms such as Yun’s algorithm [40]
that take a polynomial and generate a decomposition in square-free factors.

27

6.1.1 Vincent-Collins-Akritas algorithm

An overview of the different methods relying on Descartes’ rule can be found in [2]. The version
we will be referring to is called the Vincent-Collins-Akritas bisection method (VCA). The details of
the implementation are provided in [29]. VCA takes a polynomial and an interval and returns a set
of disjoint intervals each containing a single root, whose union contains all roots of the polynomial
in the interval. It relies on Descartes’ rule to obtain an upper bound on the number of roots of
the polynomial in an interval. In this section, we will consider that VCA always takes [0, 1] as the
initial interval.

Descartes’ rule of signs Descartes’ rule of signs states that the number of sign variations of the
coefficients of a polynomial is an upper bound on the number of its positive roots. Let us define
what we exactly mean by sign variations and then state the rule.

Definition 6.1 We define the sign(a) of an element a ∈ R as follows:

sign(a) =

1 if a > 0;

−1 if a < 0;

0 if a = 0.

We then define the number of sign changes V (A) of a list A = (a1, . . . ak) of elements of R∗ by
induction:

V (a1) = 0 and V (a1, . . . ak) =

{
V (a1, . . . ak−1) + 1 if sign(ak−1ak) = −1;

V (a1, . . . ak−1) if sign(ak−1ak) = 1.

Finally, we extend this definition to a list A of elements of R. V (A) is equal to V (B) where B is
the list of elements of R∗ obtained by removing the zeroes in A.

Theorem 6.2 Let P =
∑d

i=0 aiX
i ∈ R[X] be a polynomial represented by the list of its coefficients

P = (a0, . . . ad), and pos(P) the number of positive real roots of P counted with multiplicities. Then
pos(P) ≤ V (P) and V (P)− pos(P) is even.

Corollary 6.2.1 If V (P) = 1 or 0 then pos(P) = 1 or 0 respectively, i.e. the bound is exact.

The corollary gives us the base case of the algorithm. If the rule returns either zero or one, then
the algorithm stops. If the bound is exactly one, the current interval is returned. If the bound is
larger than one, then the interval is bisected and the algorithm is recursively applied to both halves.
This bisection step gives its name to the algorithm.

Variable transformations Descartes’ rule only applies to positive real roots, but we only want
information on roots contained in the interval [0, 1]. Similarly, for the bisection step, we want to
obtain a bound on the number of roots in [0, 1

2] and [1
2 , 1]. By applying transformations to the

variable of the polynomial, we can obtain information on the number of roots of the polynomial in
any interval.

Definition 6.3 Let P ∈ R[X]. We define the following transformations:

28

• R(P)(X) = XdegPP (1/X);

• Hc(P)(X) = P (cX);

• Tc(P)(X) = P (X + c).

We will drop the parentheses after the transformation for the sake of convenience.

Descartes’ rule applied to T1R(P) = (X + 1)degPP (1/(X + 1)) provides information on the
roots of the original polynomial P in the interval]0, 1]. We can test if 0 is a root of the polynomial
independently. To prove this, let us define a bijection h between [0,+∞[and]0, 1] as

h :

∣∣∣∣∣ [0,+∞[→]0, 1]
x 7→ 1

x+1

.

Then

T1RP (x) = 0 for x ∈ [0,+∞[

⇔ (x+ 1)degPP (1/(x+ 1)) = 0

⇔ P (1/(x+ 1)) = 0

⇔ P (h(x)) = 0 where h(x) ∈]0, 1].

Bisection Let us assume that we already have a method DescartesBound for computing Descartes’
bound on the number of roots of a polynomial P over [0, 1]. Then, the bisection step only requires
us to apply this method to two polynomials QL, QR whose roots in [0, 1] are in bijection with the
roots of P in [0, 1

2] and [1
2 , 1] respectively. These polynomials are H1/2P and T1H1/2P . Indeed,

P (x) = 0 for x ∈ [0, 1
2]⇔ P (y/2) = H1/2P (y) for y ∈ [0, 1];

P (x) = 0 for x ∈ [1
2 , 1]⇔ H1/2P (y) for y ∈ [1, 2]⇔ H1/2P (z + 1) = T1H1/2P (z) for z ∈ [0, 1].

Pseudo-code The pseudo-code of the VCA algorithm is shown in algorithm 1. The 2n factor
in the bisection step prevents the coefficients from vanishing after a few recursive calls without
altering the roots. The version provided in [29] for polynomials with τ -bit integer coefficients has
a complexity of Õ(n4τ2) where n is the degree of the polynomial and Õ represents the complexity
ignoring logarithmic factors. The proof is given in [31].

The only missing pieces are a guarantee that the algorithm terminates and a method for com-
puting the coefficients of T1RP to implement DescartesBound.

Termination This algorithm only terminates if Descartes’ bound becomes eventually zero or one
after a finite number of bisections. This is guaranteed by Vincent’s theorem.

Theorem 6.4 Let P ∈ R[X] be a polynomial of degree n. There exists a δ > 0 such that for all
a, b ∈ R+, |b− a| < δ, every polynomial of the form

(1 +X)nP

(
a+ bX

1 +X

)
has exactly zero or one sign variations in its coefficients. The second case is only possible if P (X)
has a simple root in]a, b[.

29

Algorithm 1: VCA bisection method
input : A polynomial P of degree n and an interval [a, b]
output : A list isolList of isolating intervals
functions: DescartesBound(P) applies Descartes’ rule to T1RP

AddToIsol([a, b]) adds interval [a, b] to isolList
isolList← ∅;
b← DescartesBound(P);
if b > 0 then

if b = 1 then AddToIsol([a, b]);
else

QL ← 2nH1/2P ;
VCA(QL, [a, a+b

2]);
QR ← T1Q1;
if QR(0) = 0 then AddToIsol([a+b

2 , a+b
2]);

VCA(QR, [a+b
2 , b]);

end
end
return isolList;

This form of Vincent’s theorem is proven in [3]. The family of polynomials to which Descartes’ rule
is applied in the VCA algorithm applied to P correspond to the form indicated in the theorem. The
distance |b− a| decreases with each recursive call to the algorithm.

Efficient computation of TcP To obtain information on the roots of P in the [0, 1] interval,
we must compute the number of sign changes in the list of coefficients of T1R(P). In order to do
this, we need to know the effect of the transformations Tc and R on the coefficients of P . While
R simply reverses the list of coefficients of a polynomial without changing their value, Tc is much
harder to handle. The DescartesBound method provided in [29] provides a fast computation of the
coefficients of TcP .

The original article provides no explanation on how and why the method works. For this reason,
we have decided to provide an in-depth explanation of the reasoning behind the method. It relies on
the Horner polynomials appearing in Horner’s algorithm for polynomial evaluation. The notation for
Horner polynomials Hj(X) is not to be confused with the notation for the variable transformation
HcP (X), since the transformation is not used in this section.

Definition 6.5 The initial polynomial P (X) and the translated polynomial TcP (X) = P (X + c)
are defined as:

P (X) =
n∑
i=0

aiX
i

TcP (X) = P (X + c) =

n∑
i=0

ai(X + c)i =

n∑
i=0

hiX
i

30

Definition 6.6 For j ∈ J0, nK, the j-th Horner polynomial associated with P is defined by:

Hj(X) =
n∑
i=j

aiX
i−j =

n−j∑
k=o

ak+jX
k

such that
Hn(X) = an;

Hj(X) = XHj+1(X) + aj ;

H0(X) = P (X).

Our goal then becomes computing the coefficients of the polynomial H0(X + c) = P (X + c) =
TcP (X). For this we will use the following property that immediately derives from the construction
of the Horner polynomials.

Property 6.6.1 Horner polynomials satisfy the following recursive relation which is the basis for
the method:

Hj(X + c) = XHj+1(X + c) + cHj+1(X + c) + aj . (∗)

Let us provide a notation for the coefficients of the Hj(X+ c) polynomials before explaining the
algorithm. For any given j ∈ J0, nK we denote by (hjk)0≤k≤n−j the list of coefficients of Hj(X + c)
in the basis (1, X, . . . ,Xn−j) such that:

Hj(X + c) =

n−j∑
k=0

ak+j(X + c)k =

n−j∑
k=0

hjkX
k

With this notation, we have h0
k = hk for any k ∈ J0, nK since H0(X+c) = TcP (X). Let us substitute

this notation in the property (∗):

Hj(X + c) = XHj+1(X + c) + cHj+1(X + c) + aj

⇔
n−j∑
k=0

hjkX
k = X ·

n−j−1∑
k=0

hj+1
k Xk + c ·

n−j−1∑
k=0

hj+1
k Xk + aj

⇔
n−j∑
k=0

hjkX
k = (aj + c · hj+1

0) +

n−j−1∑
k=1

(
hj+1
k−1 + c · hj+1

k

)
Xk + hj+1

n−j−1X
n−j .

From the uniqueness of the coefficients of Hj(X + c) in the power basis (1, X, . . . ,Xn−j) we obtain:

∀j ∈ J0, nK,

hj0 = aj + c · hj+1

0

hjk = hj+1
k−1 + c · hj+1

k ,∀k ∈ J1, n− j − 1K
hjn−j = hj+1

n−j−1.

Let us defining the operator +c such that for any x, y ∈ R, x+c y = x+ c · y. By extending the
hjk notation such that

∀j ∈ J0, nK,

{
hj+1
−1 = aj

hj+1
n−j = 0

31

we can summarise the previous set of rules with a single equation:

∀j ∈ J0, nK,∀k ∈ J0, n− jK, hjk = hj+1
k−1 +c h

j+1
k .

This formula is illustrated in figure 23. By organising the coefficients (hjk) in a grid, the previous
equation says that a coefficient is the result of applying the +c operator to its top-left and top
neighbours. The black nodes in the figure represent the coefficients of the Horner polynomials while
the green and blue ones represent the nodes resulting from extending the hjk notation. To compute
TcP (X), we only need to go down the pyramid from the node hn0 = an by applying the rule until
we reach the j = 0 layer.

The algorithm 2 given in the figure takes the coefficients of the initial polynomial P (X) and
computes the coefficients of TcP (X) in-place. At each iteration of the variable i, the algorithm
progresses down the pyramid. The variable P [m] successively takes the values hjk such that k+j = m,
starting at hm+1

−1 and ending at h0
m.

Algorithm 2: TcP (X)

input : P [m] = am for all m ≤ n
output: P [m] = hm for all m ≤ n
for i← 1 to n do

for m← n− i to n− 1 do
P [m] += cP [m+ 1]

end
end

Example for n = 3:
i = 1 :

– P [2] += cP [3]
i = 2 :

– P [1] += cP [2]
– P [2] += cP [3]

i = 3 :
– P [0] += cP [1]
– P [1] += cP [2]
– P [2] += cP [3]

Figure 23: Illustration of the algorithm for computing the coefficients (h0
k) of TcP (X)

This algorithm uses O(n2) additions and multiplications and only O(n2) additions when c = 1.
To compute the coefficients of T1RP (X), we apply the previous algorithm to the coefficients of
RP (X), i.e. to the reversed list of coefficients of P (X). This can be done directly by substituting
m in the inner loop of the algorithm by m′ = n−m.

The previous method is necessary because the naïve method for computing the coefficients
(hi)i∈J0,nK is too expensive. It consists in expanding each ai(X + c)i term and then adding the
resulting polynomials. From Newton’s binomial expansion, we know that the coefficients of ai(X+c)i

are the ai
(
i
k

)
ci−k for 0 ≤ k ≤ i. If we use the multiplicative formula for binomial coefficients,

32

(
i
k

)
=
∏k
j=1 (i+ 1− j)/j, computing all of the coefficients would require O(n3) multiplications, and

adding the resulting polynomials would require O(n2) additions. The complexity remains the same
if we set c = 1. The asymptotic cost of both methods is polynomial, but the number of operations
required for the naïve method is much higher than for its counterpart, even for a sixth degree
polynomial.

This method for the fast calculation of the coefficients of T1RP can be used to obtain the
Descartes’ bound on the number of roots of P in [0, 1] and implement the DescartesBound function
mentioned in the pseudo-code of the VCA algorithm. This concludes the description of this real-root
isolation algorithm, which is the one used in the current implementation of the algorithm.

6.1.2 Sturm’s algorithm

Sturm’s theorem provides a method of computing the exact number of distinct real roots of a
univariate polynomial in an interval. Let us define what a Sturm sequence is before stating the
theorem.

Definition 6.7 Let P ∈ R[X] be a polynomial of degree n and P ′ its derivative. The Sturm sequence
of P is the sequence of polynomials (Pi)0≤i constructed by:

P0 = P

P1 = P ′

Pi+1 = − rem(Pi−1, Pi)

where rem(Pi−1, Pi) is the remainder of the euclidean division of Pi−1 by Pi, such that Pi+1 =
Q · Pi − Pi−1. By definition of euclidean division deg(Pi+1) < deg(Pi), so the length of the Sturm
sequence of P is at most n+ 1.

We denote the number of sign changes in the Sturm sequence of P evaluated at a ∈ R by
VP (a) = V (P0(a), P1(a), . . . , Pn(a)).

Sturm’s theorem states the following:

Theorem 6.8 For a square-free polynomial P , the number of distinct real roots of P in]a, b] is
equal to VP (a)− VP (b).

This theorem provides a method for computing the exact number of roots of a polynomial in
any interval. It can be used as the basis for a bisection algorithm similar to the VCA algorithm.
In our case, we compute the Sturm sequence corresponding to the chord polynomial and we apply
the algorithm to the initial interval [0, 1]. The intervals are bisected until every subinterval returns
contains either no roots or a single one.

The Sturm bisection algorithm is originally described in [8]. The best current bound for its
complexity is Õ(n4τ2) where n is the degree of the polynomial and τ is the bit size of its coefficients,
the proof can be found in [11]. The most efficient implementations rely on fast polynomial evaluation
and fast Sturm sequence computation methods.

6.2 Newton’s method

Let us briefly recall that the goal of the algorithm up to this point was to reformulate the problem
in order to use a 1D Newton’s method instead of a 2D Newton-Raphson method as the previous

33

algorithms did. Our goal is to improve the stability of the algorithm and reduce the execution time
by tackling the problem differently by explicitly using the coplanarity condition of Snell’s law.

The real-root isolation algorithm provides a set of disjoint isolating intervals, each containing a
single root of the chord polynomial. This provides an estimation of the position of the solutions to
our problem on the chord. This estimate can be used to provide a good initial guess to Newton’s
method, hopefully accelerating its convergence. Once the roots over the chord have been found,
their projection on the conic constitute the solutions to our problem. In this section we describe
the one-dimensional Newton’s method and how it interfaces with the rest of the algorithm.

Newton’s method is an iterative root finding algorithm that produces increasingly precise ap-
proximations of the roots of a real-valued function. It is a popular algorithm due to its simplicity
and fast convergence under reasonable assumptions.

6.2.1 Principle

This description of the one-dimensional Newton’s method is based on [6]. This method takes a
function f , its derivative f ′, an initial guess x0, a tolerance ε and a maximum number of iterations
N as inputs. It then constructs a sequence (xn) of approximations of a root x of the function f .
This sequence is defined recursively by

xn+1 = xn −
f(xn)

f ′(xn)
.

Geometrically, xn+1 is the intersection of the x-axis and the tangent to the graph of f at xn as
illustrated in figure 24. The algorithm stops when the approximation is sufficiently accurate. This is
usually checked with one of the following stopping conditions: |xn − xn−1| < ε, |xn − xn−1| /|xn| < ε
or simply

∣∣f(xn)
∣∣ < ε. For polynomials with a large degree, the last stopping condition is usually

a poor choice, since the value of the polynomial tends to increase quickly in the neighbourhood of
the root.

6.2.2 Convergence

It can be shown that if f is twice continuously differentiable over an open interval]a, b[, and x ∈]a, b[
is such that f(x) = 0 and f ′(x) 6= 0, there exists a δ > 0 such that Newton’s method converges at
least quadratically for any initial guess x0 ∈ [x− δ, x+ δ]. This property stresses the importance of
providing a good initial guess to the method.

6.2.3 Polynomial evaluation

Since we only apply this method to polynomials, we can use their properties to make the method
more efficient. The construction of the sequence rely on the evaluation of the polynomial and its
derivative. Polynomials can be evaluated efficiently using Horner’s method with only O(n) floating
point operations, where n is the degree of the polynomial. Horner’s method can be generalised to
evaluate not only the polynomial, but also its derivatives. The algorithm 3 taken from [18] evaluates

34

Figure 24: Geometric construction of Newton’s approximation

the polynomial and its first derivative at the same time with O(n) floating point operations.
Algorithm 3: Horner’s method for evaluating a polynomial and its first derivative
input : A polynomial P represented as a list of coefficients (ai)

t ∈ R the point where P and P ′ should be evaluated
output: evalP = P (t) and evalP’ = P ′(t) the values of P and P ′ at t
n← degP ;
evalP← an;
evalP’← 0;
for i← n to 0 do

evalP’← t · evalP’ + evalP;
evalP← t · evalP + ai;

end
return evalP, evalP’;

6.2.4 Initial guess

For each root, the root-isolation algorithm returns an interval [a, b] around the root. In our imple-
mentation, we choose to use the x-intercept of the straight line passing through the points (a, f(a))
and (b, f(b)). Linearising the function over the interval is a classical technique to obtain an initial
estimate of the root for Newton’s method.

6.3 Conic projection

The roots of the chord polynomials obtained with Newton’s method lie on their corresponding
chords, not on the conic itself. Theoretically, the solutions should all lie on the conic, since copla-

35

narity is a necessary condition for refraction. The conic subdivision algorithm guarantees that the
distance between any chord and the conic lies below a user-specified threshold and thus provides
a bound on the error. Unfortunately, since the coplanarity function is a sixth degree polynomial,
small errors in the input are easily amplified in the output.

The simplest option is to directly use the roots on the chords, without projecting them onto
the conic. Since the chord approximation can be regulated by the user, choosing a very accurate
approximation guarantees that the roots of the chord polynomial are close to the roots of the
constraint function over the conic. The advantage of the method is that it does not require any
computation. This is the method used in the current implementation. Unfortunately, the impact
of this parameter on the complexity of the algorithm is unclear. Relying on this method could
potentially lead to heavily increased render times. For this reason, implementing a projection
method to decrease the error without increasing the precision of the chord approximation is the
ideal choice.

6.3.1 Closest projection

Let us first describe the problem. Given a root on a chord, we want to find the closest point to it
on the conic arc subtended by that chord. This point is the orthogonal projection onto the conic.
Let Q = (xQ, yQ) be the point on the chord and P = (xP , yP) its closest projection on the conic.
Then

−−→
PQ must be parallel to the vector ∇Q(xP , yP) normal to the conic at P .

Given the implicit form of the conic and the vector normal to the conic

Q(x, y) = Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0

∇Q(x, y) = (2Ax+By +D,Bx+ 2Cy + E)T ,

P is an orthogonal projection of Q if and only if

Q(xP , yP) = 0 and, for some t ∈ R,

{
xQ − xP = t · (2AxP +ByP +D)

yQ − yP = t · (BxP + 2CyP + E)
.

By solving this linear system for xP , yP and substituting the solutions in the conic equation, we
obtain a quartic equation in t. Solving this problem by radicals is costly and numerically unstable,
and thus is not suitable for our algorithm. Figure 25 illustrates the case of a point inside an ellipse
that has four orthogonal projections.

In [7], the authors review different methods for projecting points onto conics. Their goal is to
find the minimal distance from a point to a conic in order to fit a conic section to data points.
Even though their goal is unrelated to our purpose, the methods they consider could be used in our
algorithm. In particular, they introduce a modified version of Eberly’s projection method, originally
presented in [13] and based in an idea from [17]. Eberly’s method only applies to ellipses. It
first transforms the ellipse into its centered, axis-aligned counterpart. Then it computes and solves
the quartic polynomial with Newton’s method and applies the inverse transformation to obtain
the projected point for the original ellipse. In [7], the authors generalise Eberly’s method to all
types of conic and prove that the method is numerically well-behaved. Since our current algorithm
already implements Newton’s method and transformations on conic sections, this method would fit
in perfectly.

The roots of the chord polynomials projected on the conic section are the points P such that
LPV is a valid refracted path according to Snell’s law of refraction. The last part of the algorithm
computes the contribution of these paths to the radiance at V.

36

Figure 25: Orthogonal projection onto an ellipse

7 Contribution of refracted paths

Given a triangle and two points L and V, our algorithm computes all of the points P on the triangle
such that LPV is a valid light path according to Snell’s law of refraction. We first reformulated the
problem by using the coplanarity condition to restrict the search space. Then, by approximating the
coplanarity conic with chords, we successfully defined the constraint function over the new search
space. Finally, we used a real-root isolation algorithm and Newton’s method to find all of the
solutions to our problem, which were then projected onto the search space. Every point P found
by the algorithm corresponds to a different light path contributing to the radiance at the medium
point V. The last part of the algorithm consists in computing the contribution of these light paths
to the lighting of the scene.

7.1 Contribution

Let us define dV = ||V − P||, dL = ||L − P||, and ω̂L, ω̂V the normalised directions from P to L
and V respectively. Walter et al. [36] define the contribution of a refracted light path at V as:

contribution =
IeFAρ

D

where Ie is the intensity of the point light source, F is the Fresnel transmittance at the specular
interface, A = Tr(V→ P) is the beam transmittance between V and P, ρ is the value of the phase
function at V, and D is the distance correction factor (DCF).

In the absence of participating media and refractive interface the DCF is just the square of the
distance between L and V. If the shading normal ns over the triangle is constant and equal to the
normalised geometric normal n̂g, then:

D = (dV + ηdL)

[
〈ω̂L, n̂g〉
〈ω̂V , n̂g〉

dV + η
〈ω̂L, n̂g〉
〈ω̂V , n̂g〉

dL

]
.

37

In the general case, the DCF lacks a simple form. The article uses the ray differentials introduced
by Igehy in [21] to compute the DCF. We denote by a′ the derivative of a with respect to a small
perturbation in ω̂V and perpendicular to it.

P′ = dV

[
ω̂′V −

〈ω̂′V , n̂g〉
〈ω̂V , n̂g〉

ω̂V

]
µ = 〈ω̂L, n̂s〉+ η〈ω̂V , n̂s〉

µ′ =

[
η2 〈ω̂V , n̂s〉
〈ω̂L, n̂s〉

+ η

] (
〈ω̂′V , n̂s〉+ 〈ω̂V , n̂′s〉

)
ω̂′L = ηω̂′V + µ′n̂s + µn̂′s

L′ = P′ − 〈P′, ω̂L〉ω̂L + dLω̂
′
L

These derivatives are computed for two different directions perpendicular to ω̂V and to each
other to obtain L′⊥ and L′||. The DCF is then D = ||L′⊥ ∧ L′||||. The derivation for these formulas
with the ray differentials is provided in appendix C. The original article only includes the previous
set of equations.

7.2 Distance correction factor

The original article [36] does not explain the presence of the DCF in the formula for the contribution.
It only mentions that it corresponds to the ratio of the differential area at L created by a differential
solid angle around ωV . This represents the action of the interface on a pencil of rays, i.e. whether
it focuses or disperses light. The only other article that mentions this name is [20] which improves
on the previous next-event estimation method and uses the same formula for the contribution.

The article on ray differentials [21] mentions the fact that they can be used to compute caustics
in ray tracing, and refers the reader to an article on wavefront tracing [26] describing a technique
similar to ray differentials. Its authors use similar information to compute how the energy carried
by light wavefronts varies with propagation, reflection and refraction. This approach considers the
geometry of a differential area of a light wavefront. Indeed, the shape of these wavefronts and their
intensity vary with the interaction of light with the scene. Wavefront tracing implicitly accounts
for the dispersion of light depending on its interaction with the scene.

In the manifold exploration article [23] on which the manifold next-event estimation technique
relies, the authors explore the properties of the specular manifold defined in section 3.2. When
computing the contribution of the paths in the specular manifold, the authors introduce a generalised
geometric factor analogous to the one appearing when changing from the solid angle measure to
the area measure in the lighting integrals. For a sequence of vertices (x0,x1,x2), where x0,x2 are
diffuse and x1 is specular, the geometric factor for two vertices and the generalised geometric factor
for the whole chain are:

G(x0 ↔ x1) =

∣∣∣∣∣dω⊥(x0)

dA(x1)

∣∣∣∣∣ , G(x0 ↔ x1 ↔ x2) =

∣∣∣∣∣dω⊥(x0)

dA(x2)

∣∣∣∣∣ .
This corresponds exactly to the interpretation of the DCF as the impact of a small perturbation

to the direction of the path at one end of the chain on the differential area at the other end of the
chain. The article introducing this notation does not provide a precise explanation for the presence

38

of this factor. One of the few articles that mentions the generalised geometric factor is [25]. In this
paper, this factor arises when changing integration measures in integrals. More specifically, it arises
in the definition of integration over a different path space with a new measure. This provides an
intuition for the origin of the DCF.

The BSDF describing perfect specular scattering involves Dirac distributions depending on the
incident and outgoing directions. The Dirac distribution can be integrated away when integrating
with respect to solid angle. The factors resulting from changing from area measure to solid angle
measure simplify neatly and result in the generalised geometric factor. The derivation is technical
and requires a background in light transport theory. The details are provided in appendix D.

This concludes the theoretical contribution of this internship. By separately handling the copla-
narity condition in Snell’s law, we have successfully reformulated the refraction constraint over a
one-dimensional search space. The coplanarity condition defines a conic section over the triangle
plane. Thanks to well-known geometrical properties of conic sections, this allows us to only look
for solutions on the conic arcs inside of the triangle. By defining the refraction constraint over
straight lines, and approximating the relevant conic arcs by their chords, we use numerical methods
to find the solutions to the problem on these arcs. This results in valid refracted light paths whose
contribution to the lighting can be computed in the framework of light transport theory.

8 Implementation

This section explains in detail the current state of the implementation of the algorithm and the
assumptions it relies on. It then discusses what the next course of action is to obtain a robust
implementation.

8.1 Current state

The current version of the algorithm is implemented in the 0.6 version of the Mitsuba renderer [22].
The algorithm is implemented as a single-file subsurface plugin and interfaces with the renderer
as specified in the documentation. The implementation is based on the code of the next-event
estimation algorithm in [20], which is included in the renderer in the file singlescatter.cpp. It
is intended to work with Mitsuba’s path integrator. The code interfacing with the rest of the path
tracer has been left as is, and as many fragments of the original code have been recycled to fit in
the new algorithm. The implementation uses the linear algebra functions and structures provided
by Mitsuba and the Eigen library [14] as much as possible, only implementing new methods when
strictly necessary.

The implementation heavily relies on the following data structures:
• ConicSection stores the coefficients of the conic, its type, and the affine transformation for

the parametrisation and its inverse;
• ConicPoint stores the position of the point in barycentric space and the corresponding conic

parameter;
• ConicParam stores the value of the parameter and the branch for the hyperbolic case;
• ConicChord stores the ConicPoints defining it, the point for the next chord subdivision, the

distance to the conic and the chord polynomial;
• Polynomial stores as a vector of coefficients.

The current version includes:

39

• the entire implementation of the dimensionality reduction section;
• a partial implementation of the finding refracted paths section:

– an implementation of the methods computing both Descartes and Sturm’s bounds

– an implementation of Newton’s method

• the entire implementation of the contribution of specular paths section;
• the interface between the next-event estimation algorithm and the rest of the path tracer.

The implementation of the real-root isolation methods is currently incomplete. The bisection stage
of the algorithm is not implemented yet. The algorithm computing the closest projection of a point
on a conic is not implemented either. Once the implementation is finished, we will be able to
compare our algorithm to the previous methods.

8.2 Assumptions and improvements

The implementation of the algorithm relies on a number of assumptions that have been pointed out
throughout the report. Here is a summary of the cases that the current version of the algorithm
does not handle:

• the coplanarity conic is a parabola;
• the coplanarity conic is degenerate;
• the chord polynomial is not square-free;
• the coplanarity conic is tangent to any side of the triangle.
The first three cases are simple to handle. If the conic is a parabola, we only need to specifically

compute an affine transformation that maps the parabola to its unit counterpart. The parametrisa-
tion would also need to be adapted to work with the rest of the algorithm. If the conic is degenerate,
then it is either a single point or a set of straight lines. Since we can define the constraint function
over straight lines, degenerate conics do not rely on chord approximation. If the chord polynomial
is not square-free, Yun’s algorithm can be used to obtain a square-free decomposition of the poly-
nomial. The last case is more of a problem. The non-tangency assumption allows us to construct a
complete classification of the types of triangle-conic intersections. The algorithm that generates the
pairs of intersection points that delimit the conic arcs inside of the triangle fully depends on this
classification. Accepting tangent intersection points would considerably enlarge the classification,
and the algorithm would have to be adapted to include all new cases. It would be interesting to
gather information on the frequency of these supposedly rare cases when rendering multiple scenes.
If these cases happen more often than we expected, they should be dealt with properly.

Floating-point accuracy is also a problem in this algorithm, to which real-root isolation algo-
rithms are particularly sensitive. The coefficients of the chord polynomials span multiple orders of
magnitude. The real-root isolation algorithm operates on these coefficients, which can cause accu-
racy problems. The same can be said for Newton’s method. The current implementation does not
make any particular effort to minimise floating-point error. If these errors become a problem in the
final implementation, some parts of the code will have to be rewritten with that concern in mind.

Finally, the whole algorithm can be adapted to the reflection case, since the theoretical frame-
work is almost identical. The main difference is that for refraction, every surface in the scene must
be tested, whereas for refraction we only need to test the interface separating our two points L
and V. This requires more sophisticated culling tests to be able to discard most of the triangles in
the scene that cannot contain a solution. Without these tests, the method would not scale well to
scenes containing a large number of triangles.

40

9 Conclusion

In this internship report, we have explained the importance of next-event estimation techniques in
modern path tracing by providing the theoretical framework of light transport theory. Regular NEE
techniques fail when there is no direct line of sight to the light sources. We have presented two
state-of-the-art algorithms that extend NEE to work through refractive interfaces and with reflective
surfaces defined as triangle meshes with interpolated normals. These algorithms encode Snell’s
law as a constraint function over each triangle and find its roots with two-dimensional numerical
methods, often struggling to converge for complicated scenes. Our contribution is an algorithm
that uses the coplanarity condition in Snell’s law separately to reduce the dimensionality of the
problem. This condition can be represented as a conic section over every triangle. Since coplanarity
is a necessary condition for refraction, all solutions to the problem lie on the conic section. By
then defining the constraint function over this conic section, the problem can be solved with a one-
dimensional Newton’s method. Unfortunately, the constraint function cannot be directly defined
over the conic section. Instead, we define it as a function of a point on a straight line, and we closely
approximate the conic section by its chords. This allows us to define the constraint function over the
approximation of the coplanarity conic. We then compute the roots of the constraint function over
the chords and we project them onto the conic, thus obtaining the light paths refracted through the
triangle connecting to a light source. Finally, the contribution of these paths is computed and taken
into account by the path tracing algorithm. The contribution also includes a partial implementation
of the algorithm in the Mitsuba renderer.

Future work Despite there being room for improvement, next-event estimation techniques are
well known and well optimised for typical cases. Making NEE more versatile by extending it to
notoriously hard to handle situations, such as paths involving specular vertices, is indubitably useful.
It can considerably improve the convergence of path tracing in difficult lighting situations. This
requires adapting the method to every new case we want to handle, which can be quite labour-
intensive.

Recently, path guiding [27, 34] has gained in popularity. Path guiding is a family of importance
sampling techniques that guide light paths towards interesting regions of the scene. In difficult
lighting situations, sampling paths that contribute significantly to the final image is hard. By
learning from previous sampling choices, path guiding allows for an increasingly efficient sampling
of path space. This technique considerably improves the convergence of the algorithm in scenes
where finding paths reaching a light source is complicated.

NEE is a method that deterministically connects a sample to a light source, even through
refractive interfaces or after a reflection on a specular surface. By feeding these light paths to the
path guiding algorithm, we could direct it towards interesting regions of the scene. This combination
of NEE and path guiding could improve rendering times even further than each one of the methods
independently.

Acknowledgements

I would like to express my sincere gratitude to my supervisor Nicolas Holzschuch for his guidance and
availability, and for all of the engaging discussions about physically-based rendering and computer
graphics we had during my internship. Besides my supervisor, I would like to thank the rest of the

41

Maverick team, who made me feel welcome since the very first day of my internship. I also wish to
thank Clément Legrand for his detailed answers to my many mathematical inquiries, his endless list
of amazing textbook recommendations and his willingess to watch conic sections do the charleston.
Last but not least, I would like to thank Juliette Veuillez, whose emotional support helped me get
through these strange times.

A Conic section parametrisation

The implicit equation Q(u, v) = 0 defining the conic section is a poor formulation for choosing
points on the conic. Since the conic section is a one-dimensional curve, we can indicate the position
of a point on the conic with a single parameter t.

In the case where the conic is a unit circle or a unit hyperbola, a very simple parametrisation
can be used. For a circle, the points are defined by (cos t, sin t); for a hyperbola, the points are
(± cosh t, sinh t). The coplanarity conic defined by Q can be transformed into its unit counterpart
by applying a translation, a rotation and anisotropic scaling, i.e. an affine transformation. To
explicitly compute these transformations, we need to determine the center xc = (xc, yc) of the
conic, the angle θ between the major axis and the x-axis, and the semi-major axis a and semi-minor
axis b of the conic.

These computations are based on [5] and [30]. We will consider ellipses and hyperbolas defined
by the following equation and matrices:

Q(x, y) = Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0

AQ =

 A B/2 D/2
B/2 C E/2
D/2 E/2 F

 ; A33 =

[
A B/2
B/2 C

]
.

A.1 Centre

Central conics have a centre by definition, which is defined as the midpoint of any diameter of the
conic. Let us denote it by (xc, yc). The diameter parallel to the x-axis has the equation y = yc.
Substituting in the conic equation gives:

Ax2 + (Byc +D)x+ Cy2
c + Eyc + F = 0.

If the roots of this equation are x1 and x2 then their midpoint xc is:

xc =
1

2
(x1 + x2) = −1

2

Byc +D

A
.

Similarly, substituting with x = xc gives:

yc =
1

2
(y1 + y2) = −1

2

Byc + E

C
.

By rearranging the previous equations, we obtain the centre as the solution of the following system
of equations: {

Axc + B
2 yc + D

2 = 0
B
2 xc + Cyc + E

2 = 0
.

42

The explicit solution can be found with Cramer’s rule:

xc =

∣∣∣∣∣B/2 D/2
C E/2

∣∣∣∣∣
|A33|

=
C31(AQ)

|A33|
; yc =

∣∣∣∣∣ A −D/2
B/2 −E/2

∣∣∣∣∣
|A33|

=
C32(AQ)

|A33|
.

Note that |AQ| = D
2 C31(AQ) + E

2 C32(AQ) + F |A33|, i.e. D2 xc + E
2 yc + F =

|AQ|
|A33| .

A.2 Angle

Let us change variables in the equation of the conic so that the centre corresponds to the origin of
the plane. The change of variable is the following: x̄ = x− xc and ȳ = y − yc.

A(x̄+ xc)
2 +B(x̄+ xc)(ȳ + yc) + C(ȳ + yc)

2 +D(x̄+ xc) + E(ȳ + yc) + F = 0

⇔ Ax̄2 +Bx̄ȳ + Cȳ2 + (2Axc +Byc +D)x̄+ (Bxc + 2Cyc + E)ȳ +

Ax2
c +Bxcyc + Cy2

c +Dxc + Eyc + F = 0

⇔ Ax̄2 +Bx̄ȳ + Cȳ2 + (Axc +
B

2
yc +

D

2
)xc + (

B

2
xc + Cyc +

E

2
)yc +

D

2
xc +

E

2
yc + F = 0

⇔ Ax̄2 +Bx̄ȳ + Cȳ2 +
|AQ|
|A33|

= 0

In polar coordinates, this becomes r2(A cos2(θ) + B cos(θ) sin(θ) + C sin2(θ)) +
|AQ|
|A33| = 0. r is

maximal (resp. minimal) when the multiplicative term is minimal (resp. maximal). This term is
extremal whenever its derivative is null:

− 2A cos(θ) sin(θ) +B(cos2(θ)− sin2(θ)) + 2C cos(θ) sin(θ) = 0

⇔ B(cos2(θ)− sin2(θ)) + 2(C −A) cos(θ) sin(θ) = 0

⇔ B
1− tan2(θ)

1 + tan2(θ)
+ 2(C −A)

tan(θ)

1 + tan2(θ)
= 0

⇔ B tan2(θ) + 2(A− C) tan(θ)−B = 0

⇔ Bm2 + 2(A− C)m−B with m = tan(θ)

⇔ B[2
λ−A
B

]2 + 2(A− C)[2
λ−A
B

]−B = 0 with m = 2
λ−A
B

⇔ 4(λ−A)2 + 4(A− C)(λ−A)−B2 = 0

⇔ (λ−A)(λ− C)− (
B

2
)2 = λ2 − (A+ C)λ+ |A33| = 0

The solutions for λ are the eigenvalues of A33. The canonical equation of the central conic is then
λ1x

2 + λ2y
2 + |AQ|/λ1λ2 = 0, since λ1λ2 = |A33|. If the conic is an ellipse, the eigenvalue with the

smallest magnitude corresponds to the major axis. If the conic is a hyperbola, the eigenvalue with
a sign opposite to K = |AQ|/|A33| corresponds to the transverse axis. The semi-major axis a and
the semi-minor axis b are given by |K/λi|

1
2 with the corresponding eigenvalue.

43

A.3 Affine transformation

A given central conic can be written in its unit form or its barycentric form as follows:{
x̄2 ± ȳ2 = 1

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0.

We can switch from one form to the other by multiplying the homogeneous coordinates of a point
by multiplying them by an affine transform matrix or its inverse:xy

1

 = Tc ·Rθ · Sa,b

x̄ȳ
1

 ,

where

Tc =

1 0 xc
0 1 yc
0 0 1

 ; Rθ =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 ; Sa,b =

a 0 0
0 b 0
0 0 1

 .
In the case of an ellipse, t = atan2(ȳ, x̄); in the case of a hyperbola, t = asinh ȳ and the sign of
x̄ indicates the branch the point lies on. We could have used a different parametrisation for the
hyperbola, where a single value of the parameter corresponds to exactly a single point on the conic.
Instead, we use this parametrisation for its similarity to the ellipse’s, which allows us to consider
very similar approaches for both cases in our algorithm.

B Triangle-hyperbola intersection

This is a sketch of the proof of why a hyperbola cannot intersect a triangle four times with one
branch and twice with the other. This is not a full proof, but it conveys the main idea behind it.

We will consider a square hyperbola and a triangle of any shape. Since any hyperbola can be
transformed into the square hyperbola with an affine transformation as explained in appendix A,
this incurs no loss of generality. Given that one branch intersects four times the triangle, there is
at least one of the sides of the triangle intersecting the branch twice.

Let us take this side of the triangle and place P1 and P2 on it. By moving the point P0 over the
triangle plane, we can count the number of intersections of the triangle with the hyperbola depending
on the region of the plane P0 lies in. These regions are illustrated in figure 26. Each region contains
a label of the form X+, Y−, where X represents the number of intersections between the triangle
and the positive branch of the hyperbola, and Y the number of intersections with its negative
branch. No one of these regions are of the type 4+, 2−, and these regions depend continuously on
the position of the initial side of the triangle, P1 and P2. No specific configuration of these variables
can make a new region appear. As such, the 4+, 2− case is impossible.

C Ray differentials

Let us compute the ray differentials for transfer (light propagation), refraction for our scene. To
compute D, we apply a perturbation to ω̂V along along two unit vectors ûx and ûy such that

44

Figure 26: Illustration for the proof

(ux, uy, ω̂V) is a direct orthogonal basis: ûy = ω̂V ∧ n̂g and ûx = ûy ∧ ω̂V . We then define the
offset vector ω = ω̂V − xûx − yûy and its normalized counterpart ω̂. We denote by dV and dL the
distances between points V and P, and points L and P respectively.

Since we work with differential offsets, we will consider that the derivatives of ω and its nor-
malised counterpart ω̂ are the same. We only show the derivative with respect to x, but the same
calculations apply to the derivatives with respect to y. For an explanation of the ray differential
formulas for transfer and refraction, please refer to [21].

Initial state The starting point is V and the starting direction is −ω. Their corresponding
derivatives are:

∂V

∂x
= 0

∂ω

∂x
= −ûx

∂ω̂

∂x
=
∂ω

∂x
.

Transfer from V to P First, light propagates from V towards the interface along the direction
of ω̂, intersecting it at a point P.

P = V − dV ω̂

∂P

∂x
= dV

〈
∂ω̂

∂x
, n̂g〉

〈ω̂, n̂g〉
− ∂ω̂

∂x

 ω̂ = dV

[
ûx −

〈ûx, n̂g〉
〈ω̂, n̂g〉

]
ω̂

45

Refraction at P

ω̂L = −ηω̂ + µn̂s

µ = 〈ω̂L, n̂s〉+ η〈ω̂, n̂s〉
∂ω̂L
∂x

= ηûx +
∂µ

∂x
n̂s + µ

∂ n̂s
∂x

∂µ

∂x
=

ηµ

〈ω̂L, n̂s〉

[
〈−ûx, n̂s〉+ 〈ω̂, ∂ n̂s

∂x
〉
]

Shading normal at P To compute the derivatives of the shading normal at P , we first need to
compute the derivatives of the barycentric coordinates. This method was inspired by [15].

P = P0 + up10 + vp20

∂P

∂x
=
∂u

∂x
p10 +

∂v

∂x
p20

〈∂P
∂x

,p10〉 =
∂u

∂x
‖p10‖2 +

∂v

∂x
〈p10,p20〉

〈∂P
∂x

,p20〉 =
∂u

∂x
〈p10,p20〉+

∂v

∂x
‖p20‖2

[
‖p10‖2‖p20‖2 − 〈p10,p20〉2

] ∂u
∂x

=‖p20‖2 〈
∂P

∂x
,p10〉 − 〈p10,p20〉〈

∂P

∂x
,p10〉[

‖p10‖2‖p20‖2 − 〈p10,p20〉2
] ∂v
∂x

= −〈p10,p20〉〈
∂P

∂x
,p10〉+‖p10‖2 〈

∂P

∂x
,p10〉

Now we can compute the derivatives of n̂s.

ns = wn̂0 + un̂1 + vn̂2

∂ns
∂x

=
∂w

∂x
n̂0 +

∂u

∂x
n̂1 +

∂v

∂x
n̂2

w = 1− u− v
∂w

∂x
= − ∂u

∂x
− ∂v

∂x
∂ n̂s
∂x

=
1

‖ns‖
∂ns
∂x
− 〈n̂s,

1

‖ns‖
∂ns
∂x
〉n̂s

Transfer from P to L The light now propagates from P to L = P + dLω̂L along the direction
ω̂L.

L′|| =
∂L

∂x
=

[
∂P

∂x
+ dL

∂ω̂L
∂x

]
− 〈∂P

∂x
, ω̂L〉ω̂L

D Origin of the distance correction factor

Here is the derivation for a diffuse-specular-diffuse path consisting of surface points and without any
participating media. This is not intended as a fully rigorous, mathematically accurate derivation.

46

The goal is to provide an intuition for the origin of the DCF in the framework of light transport
theory.

The theoretical concepts behind this derivation are explained in more detail in section 5.A of
E. Veach’s thesis [33] on general Dirac distributions. The reader can also refer to Veach’s thesis for
an explanation of the formula for the specular BSDF. We will use the dσ notation for solid angle
measures instead of dω to avoid confusion between directions and integration measures. We will
use the following properties of general Dirac distributions:∫

Ω
f(x)δµ(y − x) dµ(x) = f(y),∫

Ω
f(x) dµ(x) =

∫
Ω
f(x)

dµ

dν
(x) dν(x).

Let x2 be a surface point and x0 a sample on a light source separated by a specular interface.
We define S as the set of paths of length 3 between x2 and x0 passing through a specular vertex x1

on the refractive interface. The direction between vertices xi and xi+1 will be denoted by ω̂i,i+1.
The contribution of these paths to the illumination at V can be computed as follows:∫

S
Le(x0 → x1)G(x0 ↔ x1)f̄s,n̂s(x0 → x1 → x2)G(x1 ↔ x2) dA(x0) dA(x1) dA(x2).

where

G(xi ↔ xi+1) =
dσ⊥xi+1,n̂g

(ω̂i+1,i)

dA(xi)
,

f̄s,n̂s(x0 → x1 → x2) = R · δσ⊥x1,n̂s
(ωi − ω10)

〈ωi, n̂s〉
〈ωi, n̂g〉

dσ⊥x,n̂(ω) = 〈ω, n̂(x)〉 dσ(ω)

By changing integration measures from dA(x1) to dσ⊥x1,n̂s
(ωi), we can integrate away the delta

function in the BSDF. Unless specified otherwise, n̂s and n̂g are the normals at the specular vertex
x1. ∫

S
Le(x0 → x1)G(x0 ↔ x1)f̄s,n̂s(x0 → x1 → x2)G(x1 ↔ x2) dA(x0) dA(x1) dA(x2)

=

∫∫
A2

[∫
Ω
K(ωi)δσ⊥x1,n̂s

(ωi − ω10) dσ⊥x1,n̂s
(ωi)

]
dA(x0) dA(x2)

where K(ωi) = R
〈ωi, n̂s〉
〈ωi, n̂g〉

Le(x0 → x1)
dσ⊥x1,n̂g

(ωi)

dA(x0)

dσ⊥x2,n̂g
(ω21)

dA(x1)

dA(x1)

dσ⊥x1,n̂s
(ωi)

=

∫∫
A2

K(ω10) dA(x0) dA(x2)

=

∫∫
A2

R
〈ω10, n̂s〉
〈ω10, n̂g〉

Le(x0 → x1)
dσ⊥x1,n̂g

(ω10)

dσ⊥x1,n̂s
(ω10)

dσ⊥x2,n̂g
(ω21)

dA(x0)
dA(x0) dA(x2)

=

∫∫
A2

R
〈ω10, n̂s〉
〈ω10, n̂g〉

〈ω10, n̂g〉
〈ω10, n̂s〉

Le(x0 → x1)〈ω21, n̂g(x2)〉 dσ(ω21)

dA(x0)
dA(x0) dA(x2)

=

∫∫
A2

RLe(x0 → x1)〈ω21, n̂g(x2)〉 dσ(ω21)

dA(x0)
dA(x0) dA(x2)

47

The term dσ(ω21)
dA(x0) corresponds to the inverse of the distance correction factor and can be computed

using ray differentials as shown in C. This approach can be generalised to longer specular chains
by changing measures accordingly to integrate away the delta functions introduced by the specular
BSDFs. This can probably be generalised to include participating media and deal with the case
where x2 is a volume scattering event. When dealing with area lights, the probability of choosing
a light sample must also be taken into account when computing the contribution of the refracted
light paths.

References

[1] N.H. Abel. Mémoire sur les équations algébriques où on démontre l’impossibilité de la résolu-
tion de l’équation générale du cinquième degré. Christiania - Groendahl, 1824.

[2] Alkiviadis Akritas. “Vincent’s theorem of 1836: Overview and future research”. In: Journal of
Mathematical Sciences 168 (July 2010), pp. 309–325. doi: 10.1007/s10958-010-9982-1.

[3] Alberto Claudio Alesina and Massimo Galuzzi. “Vincent’s theorem from a modern point of
view”. In: Rendiconti del Circolo Matematico di Palermo Serie II. Suppl 64 (Jan. 2000), pp.
179-191.

[4] Arthur Appel. “Some Techniques for Shading Machine Renderings of Solids”. In: Proceed-
ings of the April 30–May 2, 1968, Spring Joint Computer Conference. AFIPS ’68 (Spring).
Atlantic City, New Jersey: Association for Computing Machinery, 1968, pp. 37–45. isbn:
9781450378970. doi: 10.1145/1468075.1468082.

[5] Ayoub B. Ayoub. “The Central Conic Sections Revisited”. In: Mathematics Magazine 66.5
(1993), pp. 322–325. issn: 0025570X, 19300980.

[6] R.L. Burden and J.D. Faires. Numerical Analysis. Cengage Learning, 2010. isbn: 9780538733519.

[7] N. Chernov and S. Wijewickrema. “Algorithms for projecting points onto conics”. In: Journal
of Computational and Applied Mathematics 251 (2013), pp. 8–21. issn: 0377-0427. doi: https:
//doi.org/10.1016/j.cam.2013.03.031.

[8] G. E. Collins and R. Loos. “Real Zeros of Polynomials”. In: Computer Algebra: Symbolic and
Algebraic Computation. Ed. by Bruno Buchberger, George Edwin Collins, and Rüdiger Loos.
Vienna: Springer Vienna, 1982, pp. 83–94. isbn: 978-3-7091-3406-1. doi: 10.1007/978-3-
7091-3406-1_7.

[9] Robert L. Cook, Thomas Porter, and Loren Carpenter. “Distributed Ray Tracing”. In: SIG-
GRAPH Comput. Graph. 18.3 (Jan. 1984), pp. 137–145. issn: 0097-8930. doi: 10.1145/
964965.808590.

[10] René Descartes. Discours de la Méthode – La Géométrie. 1637.

[11] Zilin Du, Vikram Sharma, and Chee K. Yap. “Amortized Bound for Root Isolation via Sturm
Sequences”. In: Symbolic-Numeric Computation. Ed. by Dongming Wang and Lihong Zhi.
Basel: Birkhäuser Basel, 2007, pp. 113–129. isbn: 978-3-7643-7984-1.

[12] Philip Dutre, Kavita Bala, Philippe Bekaert, and Peter Shirley. Advanced Global Illumination.
AK Peters Ltd, 2006. isbn: 1568813074.

48

https://doi.org/10.1007/s10958-010-9982-1
https://doi.org/10.1145/1468075.1468082
https://doi.org/https://doi.org/10.1016/j.cam.2013.03.031
https://doi.org/https://doi.org/10.1016/j.cam.2013.03.031
https://doi.org/10.1007/978-3-7091-3406-1_7
https://doi.org/10.1007/978-3-7091-3406-1_7
https://doi.org/10.1145/964965.808590
https://doi.org/10.1145/964965.808590

[13] David H. Eberly. “Chapter 14 - Distance Methods”. In: 3D Game Engine Design (Second
Edition). Ed. by David H. Eberly. Second Edition. The Morgan Kaufmann Series in Interactive
3D Technology. San Francisco: Morgan Kaufmann, 2007, pp. 639–679. isbn: 978-0-12-229063-
3. doi: https://doi.org/10.1016/B978-0-12-229063-3.50018-2.

[14] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. http://eigen.tuxfamily.org. 2010.

[15] Eric Haines and Tomas Akenine-Möller, eds. Ray Tracing Gems. http://raytracinggems.
com. Apress, 2019, pp. 326–328.

[16] Johannes Hanika, Marc Droske, and Luca Fascione. “Manifold Next Event Estimation”. In:
Comput. Graph. Forum 34.4 (July 2015), pp. 87–97. issn: 0167-7055.

[17] John C. Hart. “II.1. - Distance to an Ellipsoid”. In: Graphics Gems. Ed. by Paul S. Heckbert.
Academic Press, 1994, pp. 113–119. isbn: 978-0-12-336156-1. doi: https://doi.org/10.
1016/B978-0-12-336156-1.50019-7.

[18] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. 2nd. USA: Society for
Industrial and Applied Mathematics, 2002. isbn: 0898715210.

[19] Markus Hohenwarter. “GeoGebra: Ein Softwaresystem für dynamische Geometrie und Algebra
der Ebene”. (In German.) MA thesis. Paris Lodron University, Salzburg, Austria, Feb. 2002.

[20] N. Holzschuch. “Accurate Computation of Single Scattering in Participating Media with Re-
fractive Boundaries”. In: Comput. Graph. Forum 34.6 (Sept. 2015), pp. 48–59. issn: 0167-7055.
doi: 10.1111/cgf.12517.

[21] Homan Igehy. “Tracing Ray Differentials”. In: Proceedings of the 26th Annual Conference on
Computer Graphics and Interactive Techniques. SIGGRAPH ’99. USA: ACM Press/Addison-
Wesley Publishing Co., 1999, pp. 179–186. isbn: 0201485605. doi: 10.1145/311535.311555.

[22] Wenzel Jakob. Mitsuba renderer. http://www.mitsuba-renderer.org. 2010.

[23] Wenzel Jakob and Steve Marschner. “Manifold Exploration: A Markov Chain Monte Carlo
Technique for Rendering Scenes with Difficult Specular Transport”. In: ACM Trans. Graph.
31.4 (July 2012). issn: 0730-0301. doi: 10.1145/2185520.2185554.

[24] James T. Kajiya. “The Rendering Equation”. In: Proceedings of the 13th Annual Conference
on Computer Graphics and Interactive Techniques. SIGGRAPH ’86. New York, NY, USA:
ACM, 1986, pp. 143–150. isbn: 0-89791-196-2. doi: 10.1145/15922.15902.

[25] Anton S. Kaplanyan, Johannes Hanika, and Carsten Dachsbacher. “The Natural-Constraint
Representation of the Path Space for Efficient Light Transport Simulation”. In: ACM Trans.
Graph. 33.4 (July 2014). issn: 0730-0301. doi: 10.1145/2601097.2601108.

[26] Don Mitchell and Pat Hanrahan. “Illumination from Curved Reflectors”. In: SIGGRAPH Com-
put. Graph. 26.2 (July 1992), pp. 283–291. issn: 0097-8930. doi: 10.1145/142920.134082.

[27] Thomas Müller, Markus Gross, and Jan Novák. “Practical Path Guiding for Efficient Light-
Transport Simulation”. In: Computer Graphics Forum 36.4 (June 2017), pp. 91–100. issn:
1467-8659. doi: 10.1111/cgf.13227.

[28] Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically Based Rendering: From Theory
to Implementation. 3rd. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2016.
isbn: 9780128006450.

49

https://doi.org/https://doi.org/10.1016/B978-0-12-229063-3.50018-2
http://raytracinggems.com
http://raytracinggems.com
https://doi.org/https://doi.org/10.1016/B978-0-12-336156-1.50019-7
https://doi.org/https://doi.org/10.1016/B978-0-12-336156-1.50019-7
https://doi.org/10.1111/cgf.12517
https://doi.org/10.1145/311535.311555
https://doi.org/10.1145/2185520.2185554
https://doi.org/10.1145/15922.15902
https://doi.org/10.1145/2601097.2601108
https://doi.org/10.1145/142920.134082
https://doi.org/10.1111/cgf.13227

[29] Fabrice Rouillier and Paul Zimmermann. “Efficient isolation of polynomial’s real roots”. In:
Journal of Computational and Applied Mathematics 162.1 (Jan. 2004). Article dans revue
scientifique avec comité de lecture. internationale., pp. 33–50. doi: 10.1016/j.cam.2003.08.
015.

[30] J.W. Rutter. Geometry of Curves. Chapman Hall/CRC Mathematics Series. Taylor & Francis,
2000. isbn: 9781584881667.

[31] Vikram Sharma. “Complexity Analysis of Algorithms in Algebraic Computation”. PhD thesis.
USA, 2007.

[32] Jacques Charles François Sturm. “Mémoire sur la résolution des équations numériques”. In:
Bulletin des Sciences de Férussac (1829).

[33] Eric Veach. “Robust Monte Carlo Methods for Light Transport Simulation”. AAI9837162.
PhD thesis. Stanford, CA, USA, 1998. isbn: 0591907801.

[34] Jiří Vorba, Johannes Hanika, Sebastian Herholz, Thomas Müller, Jaroslav Křivánek, and
Alexander Keller. “Path Guiding in Production”. In: ACM SIGGRAPH 2019 Courses. SIG-
GRAPH ’19. Los Angeles, California: ACM, 2019, 18:1–18:77. isbn: 978-1-4503-6307-5. doi:
10.1145/3305366.3328091.

[35] Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E. Torrance. “Microfacet
Models for Refraction Through Rough Surfaces”. In: Proceedings of the 18th Eurographics
Conference on Rendering Techniques. EGSR’07. Grenoble, France: Eurographics Association,
2007, pp. 195–206. isbn: 978-3-905673-52-4. doi: 10.2312/EGWR/EGSR07/195-206.

[36] Bruce Walter, Shuang Zhao, Nicolas Holzschuch, and Kavita Bala. “Single Scattering in Re-
fractive Media with Triangle Mesh Boundaries”. In: ACM Trans. Graph. 28.3 (July 2009).
issn: 0730-0301. doi: 10.1145/1531326.1531398.

[37] Turner Whitted. “An Improved Illumination Model for Shaded Display”. In: Commun. ACM
23.6 (June 1980), pp. 343–349. issn: 0001-0782. doi: 10.1145/358876.358882.

[38] Wikipedia. Conic Sections. url: https://en.wikipedia.org/wiki/Conic_section.

[39] Wikipedia. Matrix Representation of Conic Sections. url: https://en.wikipedia.org/
wiki/Matrix_representation_of_conic_sections.

[40] David Y.Y. Yun. “On Square-Free Decomposition Algorithms”. In: Proceedings of the Third
ACM Symposium on Symbolic and Algebraic Computation. SYMSAC ’76. Yorktown Heights,
New York, USA: Association for Computing Machinery, 1976, pp. 26–35. isbn: 9781450377904.
doi: 10.1145/800205.806320.

50

https://doi.org/10.1016/j.cam.2003.08.015
https://doi.org/10.1016/j.cam.2003.08.015
https://doi.org/10.1145/3305366.3328091
https://doi.org/10.2312/EGWR/EGSR07/195-206
https://doi.org/10.1145/1531326.1531398
https://doi.org/10.1145/358876.358882
https://en.wikipedia.org/wiki/Conic_section
https://en.wikipedia.org/wiki/Matrix_representation_of_conic_sections
https://en.wikipedia.org/wiki/Matrix_representation_of_conic_sections
https://doi.org/10.1145/800205.806320

	Introduction
	Prerequisites
	Light transport theory
	Monte Carlo path tracing

	State of the art
	Global next-event estimation (GNEE)
	Manifold next-event estimation (MNEE)
	Discussion

	Overview
	Motivation
	Algorithm overview

	Dimensionality reduction
	Refraction constraint function
	Coplanarity conic section
	Dimensionality reduction

	Finding refracted paths
	Real-root isolation algorithms
	Newton's method
	Conic projection

	Contribution of refracted paths
	Contribution
	Distance correction factor

	Implementation
	Current state
	Assumptions and improvements

	Conclusion
	Conic section parametrisation
	Centre
	Angle
	Affine transformation

	Triangle-hyperbola intersection
	Ray differentials
	Origin of the distance correction factor

