
  

 

Layout problems under topological 
constraints for computational fabrication

Marco Freire
Supervised by Sylvain Lefebvre

Hi everyone, thank you all for assisting today to my 
PhD defense on the topic of Layout problems under 
topological constraints for computational fabrication.

This work started in October 2020, and was supervised 
all along by Sylvain Lefebvre, lead researcher of the 
Matter From Graphics team.



  

 

Outline

I.   Context
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(a) 3D LED displays from foldable circuit boards

(b) Procedural generation of 3D printing supports

IV. Conclusion

This presentation will be structured as shown here.

I will first provide basic context on the main fields 
relevant to my thesis. Next, I will introduce layout 
problems, specifically under topological constraints, 
which are the core of my work.

Then I will focus on the contributions accomplished 
during my PhD, and I will conclude with the 
perspectives gathered during this time.



  

 

Context

Let’s start with a bit of context!
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Computational design

FreeCAD

KiCad

During these years I have worked at the intersection of 
computational design, fabrication and computer 
graphics.

Computational design is the use of computer-based 
tools to help the design process. This ranges from 
assisting existing workflows, to completely changing 
them through novel approaches.

CAD software is now widespread among industrial 
users and amateurs alike, ranging from object 
modeling in engineering with tools such as FreeCAD 
(left), or electronics design with KiCAD (right).
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Computational fabrication

The development of CAD software and the 
democratization of previously exclusively industrial 
tools, have enabled a wider public to be creative with 
them.

One example is 3D printing. Fused Filament 
Fabrication printers melt plastic that is deposited to 
create shapes layer by layer. This allows anyone to 
print any object represented by a 3D mesh.
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Computational fabrication

Kinematics Dress
Nervous System, 2014

Chermain et al., 2023

Jourdan et al., 2023Tricard et al., 2020

Colleagues here at the MFX team find innovative ways 
to use them. Printers can be used to create objects 
with anisotropic appearances, foams that deform in a 
specified manner when force is applied, or even 
objects that deform when heated.

[CLICKx2] The nervous system studio specializes in 
leveraging 3D printing technologies to create 
procedurally generated art. Here on the right is the 
Kinematics Dress, a dress composed of unique 
interlocking components, 3D printed as a single 
piece. This piece is included in the permanent 
collections of museums such as the MoMA in NY, 3D 
printing has become a big deal.
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Layout problems in design

Objects, space, constraints

Computer-generated residential building layouts,
Merrell et al., 2010

My work specifically focuses on layout problems within 
computational design and fabrication. This is going to 
seem totally unrelated to what came before, but hopefully 
this all comes together by the end of my presentation.

The concept of layout problem applies to many different 
situations. It consists of a set of objects, a space, and a 
set of constraints. Solving the layout problem means 
arranging the objects within the space while satisfying the 
constraints.

An example is [CLICK] building layouts, where a set of 
rooms, with a specific role have to be fit into a floorplan, 
while ensuring that e.g. all rooms are accessible, or 
optimizing window placement for daylight.

Another example is [CLICK] circuit layouts. Here a set of 
electronic components have to be fit into a circuit board 
and connected together as specified by the schematics.
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Topological constraints

?

Objects are connected to each other!

I specifically deal with layout problems under 
topological constraints.

(As we all know, topologists tell us that a donut and a 
mug are the same, but react poorly when prompted 
to eat the mug.)

I use topological here in opposition to geometric. 
Geometry cares where objects are, whereas 
topology only cares about how they are connected.

What are topological constraints then? [CLICK] It 
means that the objects in the layout problem are 
connected to each other in some way or another. 
This is straightforward to see in the case of 
electronics circuits.
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Contributions

During my thesis, I have tackled two specific problems, 
each having led to a publication.

The first is circuit layout generation in the context of 
creating foldable circuit boards for 3D LED surface 
displays. The second is the procedural generation of 
support structures for 3D printing based on local 
descriptions of the supports.
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Positioning

Interpret as a 
layout problem

Define solutions 
locally

Use properties to 
generate solutions

In both cases, we frame the challenge as a layout 
problem, which we solve [CLICK] by constructing 
solutions defined locally, and we exploit properties 
[CLICK] this definition provides us to design 
synthesis algorithms.
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Positioning

Interpret as a 
layout problem

Define solutions 
locally

Use properties to 
generate solutions

It is straightforward to see that circuit layout generation 
is, a layout problem. The specific topology of our 
circuit (an LED chain), allows us to embed it [CLICK] 
in a challenging space (the PCB), resulting from the 
fabrication constraints.

The main contribution as a part of this thesis is the 
design of objects with fabrication concerns in mind, 
and the use of their emergent properties to efficiently 
generate circuit layouts.
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Positioning

left right

above

below

Interpret as a 
layout problem

Define solutions 
locally

Use properties to 
generate solutions

It is less obvious to see how generating support 
structures for 3D printing is a layout problem.

We work by tiling 3D space with a set of building 
blocks that define the support structure. These 
blocks come with extra information specifying how 
they can be assembled with other blocks. This 
defines a space of all possible support structures, 
[CLICK] among which we synthesize a solution.

Here the contribution is, in my opinion, particularly 
original. Everything from seeing this as a layout 
problem, to properly defining supports locally, to 
generating a coherent support structure was a 
challenge.
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Layout problems

[~6min]

Now let me provide a short introduction into layout 
problems.
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Layout problems

Layout problems are a very general class of problems. 
They consist of three things: a set of objects, [CLICK] 
a space, [CLICK] and a set of constraints and 
objectives.

Solving a layout problem simply means finding an 
arrangement of the objects within the space that 
satisfy the constraints and optimize the objectives.

Unfortunately, these are often NP-hard combinatorial 
problems. This makes it often necessary to find 
clever heuristics to find approximate solutions.
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Cutting and packing

Cutting and Packing, Alvarez-Valdes et al., 2018, Handbook of Heuristics

Cutting and packing problems are simple to describe 
and are relevant to all sorts of fabrication and 
logistics.

They arise when an object’s or container’s space has 
to be divided into smaller items while minimizing 
waste. The defining constraint here is geometric: 
items must not overlap.

Due to the importance of this type of problems, there 
exists a large body of literature on them.
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What about connections?
Multi-layer PCB

Circuit layouts are 
(hyper-)graph embeddings!

In cutting and packing, there are no connections 
between elements, which are key in the formulation 
of the layout problems we target.

Indeed, circuits are graphs, they consist of 
components connected together by conductive 
material. This connectedness is easily seen in the 
schematics and rat’s nest on the left.

[CLICK] Also, PCBs are complicated spaces, with 
multiple conductive layers connected through vias. If 
I want to be fancy, circuit layouts [CLICK] are then 
(hyper-)graph embeddings with electrical constraints.

We cannot ignore these connections: they are integral 
to the circuit function, and poor layouts may even 
make performance worse or increase the cost of the 
circuit.
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Graph drawing

K5K3,3

To better understand the complexity of these layout problems, 
we’ll look at graph drawing. Graph drawing is the 
quintessential layout problem, hiding under a deceptively 
simple appearance. It appears within more complex layout 
problems such as circuit design. 

As a quick reminder, a graph consists of nodes or vertices and 
edges connecting them. Graph drawing is the process of 
drawing all nodes and edges usually on a plane.

Nodes are connected to each other, endowing the graph with a 
topological structure. This structure can be represented in 
drawings, and usually provides information on the real 
situation modeled by the graph.

For example, on the left we have a bipartite graph, K33, where 
every edge connects a node on the left with a node on the 
right. On the right we have a complete graph, K5, where all 
pairs of nodes are connected with an edge. These properties 
are clearly visible in these drawings. 
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Graph drawing
strict graph {

subgraph 1 {
0 -- 1;

};
subgraph 2 {

1 -- 2;
2 -- 1;
8 -- 22;
9 -- 23;
10 -- 24;
11 -- 25;
12 -- 26;
13 -- 27;
14 – 28;
[...]

};
[...]
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¿How do we draw this?

But these are very simple graphs, what about larger 
ones?

Here on the left is a written representation of a graph, 
specifying what pairs of nodes are connected. We 
don’t know what the graph looks like from this 
description!

The question is then, [CLICK] how do we draw this? 
Here is a possible solution [CLICK] generated with 
graphviz, a graph drawing software.

As you can see, there are similar clusters of tightly 
connected nodes drawn closer together. This 
representation definitely helps building an intuition 
about the structure of the graph.
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Planar graphs

No crossings! Wagner’s theorem, 1937

Connectedness introduces a host of new problems and 
properties we can study, e.g. planarity.

A graph is planar if it can be drawn without any of its edges 
crossing. This drawing is not planar, but by [CLICK] moving 
node 3 inside of this triangle, we obtain [CLICK] a planar 
drawing of the graph. This shows that the graph itself is 
planar. Planarity is very relevant to circuit design, since 
copper traces must not intersect.

How do we do this for more complicated [CLICK] graphs? 
Well, if we squint a bit [CLICK] and see that the 
complicated graph contains [CLICK] K33 or K5, we know 
that the graph is not planar! (with a graph containing 
another having a precise mathematical definition).

Wagner’s theorem states that K33 and K5 are the 
“fundamentally non-planar graphs”, providing a surprisingly 
simple characterization for a complex notion.
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Genus of a graph

Graphs on Surfaces, Mohar et al., 2001

We can actually complicate things even further. Trust 
me when I say that drawing a graph on a sphere or a 
plane is the same. But of course, a sphere is simply 
a donut without a hole. 

It can be proven that [CLICK] every finite graph can be 
drawn without crossings onto a surface with enough 
holes. The number of holes is known as the genus of 
the graph.

For us, non-graph theorists, this might seem like a 
pretty far-fetched concept.
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Not so abstract after all...
Multi-layer PCB

Circuit layouts are 
(hyper-)graph embeddings!

But remember! Circuit layouts are hypergraph 
embeddings into complex spaces consisting of 
multiple sheets connected by holes.

The seemingly unrelated complexity of graph drawing 
and topological graph theory, arising only from edges 
between nodes, comes up in many other layout 
problems, making them fundamentally hard.
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Contributions

[~12min]

With a now clearer view on layout problems, and their 
surprising complexity, let us focus on the 
contributions of my thesis.
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PCBend: Light Up Your 3D Shapes 
With Foldable Circuit Boards

M. Freire*¹, M. Bhargava*², C. Schreck¹, P.-A. Hugron¹, B. Bickel², S. Lefebvre¹
¹Université de Lorraine, CNRS, Inria, LORIA, France
²Institute of Science and Technology Austria, Austria

*Joint first authors

First I will talk about the PCBend project that resulted 
in a SIGGRAPH 2023 publication.

This project was done in collaboration w/ Manas 
Bhargava and Bernd Bickel from ISTA.

In here we tackle a set of layout problems related to 
electronics design.
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Introduction

Jiři Praus, LED Sphere Gislain Benoit, Closeup of The Clock

Do-it-yourself LED-based projects are hugely popular 
on the internet, among electronic hobbyists and 
makers. They often showcase impressive creations 
and lighting effects using LEDs and freeform circuitry.

Here on the left is a freeform LED sphere, where all 
LEDs are soldered onto copper wire shaped as a 
ball. On the right is a closeup of a much larger piece, 
The Clock which is a fully functional clock created 
only with components and conductive wire.
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Introduction

“I’m not sure how long it took me to complete 
all the rework, but I did make it through a 60h 
audio book that week.”

Greg Davill

These DIY projects take enormous amounts of skill 
and time to execute. Just a simple rework due to a 
design mistake on the icosahedral display shown 
here required many tens of hours to fix.

All of these LED creations require ad hoc solutions 
needing to be designed from the ground up, making 
this approach difficult to scale and generalize.

Seeing these examples, it’s no surprise that these 
creations are so popular, given the diversity of visual 
effects that can be created with them.
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Introduction

More generally, LED-based lighting installations have 
become highly popular in the last decades, finding a 
trove of different uses for commercial and industrial 
applications.

This ranges from the Las Vegas LED sphere, able to 
display animations in every direction, to LED-based 
light stages used for facial relighting in the movie 
industry, passing by the development of light 
signatures in the automotive industry, where light 
patterns now serve to distinguish between car 
brands and models.
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Objective

Requirements

– Accessible

– Scalable

– Creative

Fabricate LED-based 
surface displays of 

arbitrary shape

Our project tackles the challenge of creating custom 
surface LED displays from a user-provided input 
mesh.

Our goal with this system was to make it 
simultaneously: accessible, scalable, easy to use 
and still enable the users’ creativity.

We wanted to keep the spirit of the DIY LED projects, 
while making it accessible to a broader public with 
less technical knowledge. For this reason, we made 
the whole system open-source, accessible on github 
with instructions.
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Related work

Thermoformed CBs: Hong et al. 2021 FiberCuit: Yan et al. 2022SurfCuit: Umetani et al. 2017

On surface circuit 
fabrication

Designed in 2D 
Deformed to 3D

DIFFICULT TO SCALE

The development of 3D circuits and novel methods for 
circuit fabrication is not new. Previous work on these 
areas have followed two main approaches.

The first approach [CLICK] consisted in directly designing 
and fabricating the circuit on a 3D surface. 

The second approach [CLICK] consists in designing the 
circuit in 2D and later deforming it to 3D by various 
methods such as heating or folding.

These methods use non-traditional conductors (such as 
inks or plastic filament), or atypical substrates (such as 
paper or 3D printed objects) to design non-planar 
circuits. While these technologies enable new types of 
circuitry and electronics, [CLICK] it is difficult to scale 
them to more complex circuitry with 100s or 1000s of 
components.

Before getting into the weeds, let me say a few words on 
traditional circuit design.
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Traditional circuit design

Schematics design Physical layout design

Fundamentals of layout design for electronic circuits, Lienig and Scheible, 2020

Traditional circuit design starts with a schematics 
based on a functional specification. The schematics 
specify the components of the circuit and how they 
are connected together.

Then, physical layout design takes this information and 
physically embeds it in the circuit board, defining the 
actual geometry of the circuit, while avoiding 
electrical and thermal problems among many others.
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Circuit representation

Fundamentals of layout design for electronic circuits, Lienig and Scheible, 2020

Computationally, this circuit structure is represented as 
a netlist, where a net is a wire connecting two or 
more pins. This representation contains all of the 
information necessary for the physical layout phase.
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Physical layout design

Placement Routing

Fundamentals of layout design for electronic circuits, Lienig and Scheible, 2020

Physical layout consists of two important steps, 
placement and routing. Placement takes the 
components specified in the netlist and places them 
within the board. Routing uses the connectivity 
information and embeds the interconnects in the 
space.

Modern designs can be incredibly large, so additional 
steps are used to break down the problem into 
smaller tractable instances.

A good routing usually minimizes total wirelength, 
which is relatively easy to estimate. However, a good 
placement is one that can be routed [CLICK], which 
as you can expect, is pretty hard to check without 
having to route the whole design. These constraints 
make these problems NP-hard in general.
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Objective

Requirements

– Accessible

– Scalable

– Creative

Fabricate LED-based 
surface displays of 

arbitrary shape

With this out of the way, we are back to our main topic! 
Remember that our goal is to create surface displays 
of arbitrary shape.
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Our approach

Printed circuit boards

● (Relatively) Affordable
● Easy design
● Fabrication services

?

We approach the fabrication of 3D electronics from a 
different point of view.

We decided early to target traditional PCBs, which are 
a very mature technology, that can be produced 
cheaply through online services, by inexperienced 
designers.

Rigid-flex boards also exist. [CLICK] These consist of 
multiple rigid PCBs connected by flexible ribbons. 
These are 5x to 10x more expensive, harder to 
design for, and take longer to manufacture, so we will 
limit ourselves to regular PCBs.
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Our approach

Origami

Kerfing

PCB “kerfing”

http://www.cy384.com/blog/flex-pcbs.html

To turn a PCB into a 3D object, we take inspiration 
from two techniques used on different materials. 
First, origami [CLICK], which is the art of bending 
paper to create complex shapes. Second, [CLICK], 
wood kerfing, where a saw or a laser cutter is used 
to engrave of cut patterns the wood.

Kerfing allows the wood to take on new mechanical 
properties, being able to bend where it previously 
couldn’t.

We combine these two approaches in PCB “kerfing”, 
[CLICK] where we use patterns cut into the PCB to 
allow it to bend where we wish.
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Related work

Rodriguez et al., 2022: Computational design of 
laser-cut bending-active structures &

2024: Designing bending-active freeform 
surfaces

Speetzen, Kobbelt, 2024: Freeform shape 
fabrication by kerfing stiff materials

Unlike origami and kirigami, kerfing as a technique is 
just starting to attract interest in computational 
fabrication, mostly still with wood or cardboard. 
Examples of this type of research include the 
computational design of bending-active structures 
from 2022 and the following 2024 paper just 
presented at SCF 2024; and the fabrication of 
freeform shapes from 2024.
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Our approach

Full hinge

Half hinge

Bending depends on the length 
of the hinge!

We call our kerfing patterns hinges. After many 
iterations, we converged toward these two specific 
patterns, that we call full and half hinges.

These are pretty similar and consist of two separate 
paths connecting two solid PCB areas. [CLICK] They 
bend through the torsion of the middle element.

We carried out bending experiments to determine how 
much these hinges can be bent [CLICK] before 
breaking as a function of their length, represented on 
the left.
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Bending experiment
Full

Half

These experiments showed, as we expected, that the 
longer the hinge is, the more it is able to bend.

We plotted here the bending angle as a function of 
hinge length. The top and bottom plot correspond 
respectively to the full and half hinge.

Based on this data, we defined a linear function 
relating hinge length to a safe bending angle where 
the hinge does not suffer any damage.
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Arbitrary 3D shape

Input Unfolding Assembly

These hinges allow us to create 3D objects from 2D 
PCBs fabricated as usual.

By taking a 3D mesh as an input, we can [CLICK] 
unfold it flat and insert hinges in between the 
triangles, and then [CLICK] fabricate it and assemble 
it on top of a 3D printed frame.

Note that since the hinges don’t crease like paper, but 
[CLICK] bend instead, the frame’s edges have to be 
chamfered to ensure proper assembly.
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Surface display electronics

Embed

5050
1
5
1
5

LED 
Modules

We now have an unfolded mesh, and a circuit [CLICK] 
to embed within it [CLICK].

Our circuit consists of simple LEDs connected in a 
chain. These come in two sizes [CLICK], 
1.5x1.5mm2 and 5x5mm2. We use Neopixel LEDs, 
they are RGB, easy to control, and very common for 
home lighting applications such as LED strips.

We pack the LEDs into rectangular modules containing 
a small decoupling capacitor. As you can see 
[CLICK] in the schematics, each module connects to 
PWR and GND, and also to the previous and next 
module in the chain.

To give you a sense of their size [CLICK], this is what a 
1 Euro coin looks like at the same scale as the LED 
modules.
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Overview

With this, we have a full pipeline from an input mesh to a 
fabricated object. First, [CLICK] the input mesh is 
unfolded and hinges are inserted to enable folding. 
Next, [CLICK] a functional electronic circuit is generated 
in the unfolded shape, resulting in fabrication blueprints. 
[CLICK] The circuit can be sent for fabrication, and after 
folding onto a 3D printing scaffolding, it can be used to 
design lighting effects. I will focus now on our circuit 
layout generation method.

Generating a circuit layout in the unfolding is a complex 
task. Unfoldings can be pretty large, having up to 
hundreds of triangles, with a complex shape due to the 
hinges. This makes placing the components in the 
whole circuit at once too expensive and makes 
automatic routing non-applicable. We break down the 
problem into smaller tractable instances. 



 

As you can see [CLICK], the unfolding is a tree. Also, 
the LEDs are connected sequentially, starting and 
ending at the connector [CLICK] represented by a 
rectangle. Using these properties, by making the 
chain always “go on the right side of the hinge” 
[CLICK], we ensure that it goes into every triangle 
and passes twice through every hinge, once in each 
direction. [CLICK] This allows us to split [CLICK] the 
global layout problem into separate subproblems for 
every triangle.

The subproblem [CLICK] is then uniquely determined 
by the shape of the triangle and how and where the 
chain enters and exits it. The colored arrows 
represent separate LEDs subchains.

 41

C

Breaking down the problem
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Layout problem

Subproblem

Placement

Layout = +

Order & Route

From this subproblem information, our goal is to 
generate a local layout. For this we first [CLICK] 
need to place the LEDs within the triangle, and then 
[CLICK] order and route them jointly to form LED 
subchains connected to the inputs and outputs.

This does not correspond to the typical workflow of 
electronics design, namely: schematics design, 
placement and routing. Our global circuit is not fully 
defined until the end of the layout phase. Before 
placement, we don’t know the exact number of 
components of the circuit. And before ordering & 
routing, we do not know the order of the specific 
LEDs in the chain.

Let’s quickly go over our method for these two phases:
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Placement

LED placement starts with a [CLICK] Centroidal 
Voronoi Tessellation (or CVT) in the triangle that 
distributes a set of points around. Then, the LED 
modules [CLICK] are spawned at the point locations, 
and later [CLICK] collisions are resolved. A final CVT 
[CLICK] step is used to redistribute the modules, fully 
exploiting the available space.
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Order & Route

Orientation? Order?

Placing rectangles [CLICK] is only half of the job 
though, we need to connect them now. LEDs have 
an input and an output [CLICK], and thus two 
possible orientations. They also have an order: the 
output of one has to be connected to the input of the 
next.
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Order & Route

Connect to IOsCreate cycle

Choosing the order and the orientations [CLICK] gives 
us a cycle. The order is obtained with a TSP solver, 
using the distances between the centers of the 
modules as the metric. The orientations are then 
optimized so that there are no intersections between 
the segments in blue connecting the LEDs.

The cycle then needs to be connected to the inputs 
and outputs of the triangle. We split it [CLICK] to 
create separate subchains, each connected to an 
input and output [CLICK].

Here we cut the dashed lines on the left and connect 
them to the inputs and outputs with the red arrows on 
the right. Each subchain is represented by a different 
letter.
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Stitching the local layouts

Placement

+

Order & Route

= Local Layouts

Finally, after placement, ordering and routing, we 
have all local layouts [CLICK]. The last step 
stitches them [CLICK] into a single global layout 
that can be sent for fabrication.
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Actual layouts
VCC copper 

plane

LED 
module

GND copper 
plane

Vias b/w 
layers

Data 
traces

If you remember the circuit schematics, you will have 
realized that I have conveniently ignored PWR and 
GND.

Here you can see an actual triangle layout that we 
generated. On the top layer, [CLICK] we have the 
LED modules surrounded by the power copper 
plane. [CLICK] On the bottom layer, we have [CLICK] 
the data traces connecting to the LEDs through vias 
between layers, all surrounded by the ground copper 
plane (green). This [CLICK] is what the two layers 
look when superimposed.
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Here is a simplified example of the complete layout 
for the star mesh you have seen in previous slides 
(hiding the ugly truth). After the physical PCB is 
received, the last step is assembling the object.
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Procedural bridges-and-pillars 
support generation

M. Freire, S. Hornus, S. Perchy, S. Lefebvre
Université de Lorraine, CNRS, Inria, LORIA, France

[~28min]

This contribution deals with the procedural generation 
of supports for 3D printing, that resulted in a 2022 
Eurographics short paper.
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3D printing

Fused filament fabrication Stereolithography

Layer by layer!

As I said in the introduction, 3D printing allows us to 
create physical shapes from a digital model through 
various techniques such as Fused Filament 
Fabrication or Stereolithography.

[CLICK] The fact that these technologies print objects 
layer by layer impact what type of shape can be 
printed.
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Supports for 3D printing

Overhangs need supports!

Dumas et al., 2014: Bridging the gap: Automated steady scaffoldings for 3D printing

This is a problem for objects containing steep 
overhangs and local minima. These [CLICK] need 
support structures to be printed, or else we get this 
[CLICK] type of result.

Support structures [CLICK] help support overhangs 
in the object during printing.

51
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Support techniques

Schmidt, Umetani, 2014: Branching 
support structures for 3D printing

Jin et al., 2015: Support generation for 
additive manufacturing based on sliced data

Jiang et al., 2018: Support structures for 
additive manufacturing

There are many support generation techniques, 
balancing reliability, sturdiness, printing time, 
material cost and plenty of other factors.

A core challenge is minimizing support size while 
maintaining support reliability. Here are two opposite 
approaches. On the left you have a dense support 
structure, while on the right you have a sparse, tree-
like support structure.

Support generation and optimization is a complex topic 
that I will not explore further today. You can refer to 
the 2018 review for more details.
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Bridges and pillars

Pros:
• Prints reliably, material efficient, stable

Efficiently avoid collisions!
Dumas et al., 2014: Bridging the gap: Automated steady scaffoldings for 3D printing

Cons:
• Complexity scales with the number 

of anchors: O(n4) 
• Supports may intersect the object

 ⇒ difficult removal, scarring

We specifically improve the generation of bridges-and-
pillars supports introduced by Dumas et al in 2014. 
These are reliable, material efficient and stable during 
printing.

[CLICK] Their algorithm scales steeply with the number of 
points to support, or anchors, as I will call them. This is a 
problem for objects with many overhanging features.

[CLICK] Also, the public implementation of the method 
does not avoid intersections between the object and the 
support. This makes support removal harder and leaves 
scars on the printed object. You can see on the right 
circled in red, zones where the supports intersect the 
figurine.

[CLICK] We aim to generate the same kind of structures 
while efficiently avoiding collisions!

53
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Our approach

 Structure 
 analysis 

Base layout: template

    Adjacency constraints
 ⇒ Rules for valid layout
 ⇒ Defines solution space

Bridges-and-pillars
support structure

Motivation:
Implicit object avoidance!

We accomplish this by casting it as a layout problem.

We analyzed the bridges-and-pillars support structure 
to extract a base layout consisting of building blocks 
or labels, represented in different colors. This acts as 
a template, specifying how these labels can be 
assembled through adjacency constraints.

The template [CLICK] defines the rules for a valid 
layout, which in turns defines the solution space 
inhabited by our support structures.

This was motivated by [CLICK] wanting the support 
structures to avoid the object. With this approach, we 
can define the object and the supports as different 
labels that cannot be adjacent except at anchors 
needing support.
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Our approach

Tile-based
synthesis

Base layout: template

Final layout: support

Motivation:
Generate valid solutions by default

From this template defining the solution space, we use 
a tile-based synthesis algorithm [CLICK] called 
Model Synthesis to generate support instances that 
satisfy our design constraints by default.
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Example-based model synthesis

Often runs into contradictions!

Exemplar

Merrell, 2007: Model synthesis

Model Synthesis generates content similar to an 
provided exemplar by extracting adjacency 
information from it. Here you can see the result of 
Model Synthesis applied to a small castle tileset, 
generating a large 3D castle-like structure.

The main issue with these algorithms for our 
application is that [CLICK] they often encounter 
contradictions at runtime. These happen when in a 
given cell, all tiles break the constraints.

This is normally solved by backtracking or by 
restarting from scratch. Merrell realized that the 
larger the domain is, the more likely it is that the 
algorithm will run into a contradiction, making them 
very likely for our application.
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Tile-based synthesis

An aperiodic set of 11 Wang tiles,
Jeandel and Rao, 2021

Tile-based methods in computer 
graphics methods, Lagae, 2007

Tile-based techniques are common in computer 
graphics. Here on the left is a set of Wang tiles that 
can be assembled if they share the same color along 
their edges. This set of tiles is aperiodic, meaning 
that the resulting tiling of the plane does not contain 
repeating patterns.

This allows generating [CLICK] diverse content at an 
arbitrary size by generating the content over the 
small set of tiles, and then tiling the space with these 
tiles.
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Distribution optimization
2011

2022

Wei et al., 2009: State of the art in example-based texture synthesis

Other texture synthesis techniques can be seen as 
layout solvers.

These two generate structured textures resembling a 
provided input. This could be interpreted as an object 
packing problem, which is fundamentally a layout 
problem.

Despite the similarities, these are not suited for our 
purpose due to our strict discrete local constraints 
defining the support structures. There is no concept 
of connections between elements, only spatial 
distributions. For more details on this field, please 
refer to this 2009 state of the art.
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Contributions

● Cast support generation as a layout problem
● Efficiently avoid collisions with the object 
● Succeeds first try without contradictions

Our contribution is a support generation algorithm 
inspired by model synthesis that creates a bridges-
and-pillars support structure for any given voxel 
object.

Due to the formulation as a layout problem with 
adjacency information, collision avoidance is 
implicit and incurs no extra cost. Finally, we 
manage to avoid contradictions during synthesis, 
always succeeding first try without trial-and-error.

This method was implemented within the IceSL slicer 
developed by the MFX team.
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(Simplified) Support labels

Object Anchor

Ground

Input labels

Empty Empty

Bar

Junction

Pillar

Generated labels

I will explain the process with a simplified 2D version 
of the supports.

We start with a voxelized input of the object we want 
to print. Input voxels can be part of the object, an 
anchor (i.e. a point needing support), part of the 
ground or just empty. [CLICK] A voxel in the 
generated support structure can be: a part of a 
horizontal bar, a part of a vertical pillar, a junction 
between a bar and a pillar, or just empty. The 
empty label appears on both sides since it can be 
either an input, or generated by the algorithm.

The set of labels only tells us what our building 
blocks are, we still need to know how they can be 
assembled. 
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Template and adjacency constraints

What labels
occur around

in the 
template?

Template

This information is provided by a set of adjacency 
constraints defined by our template. This template 
is a compact representation of all structures that 
can be synthesized by the algorithm.

The constraints are extracted by looking at every 
adjacent pair of labels in every direction and 
marking them as allowed.

[CLICK] As an illustration, let’s find what labels are 
allowed next to a pillar label.
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Adjacency constraints

We see that a bar label is adjacent to a pillar on its 
right. We add this combination to the set of 
adjacency constraints.
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Adjacency constraints

This is also true on the left.
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Adjacency constraints

A pillar can also be adjacent to an empty label on 
both left and right.
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Adjacency constraints

Pillars can be adjacent to other pillars vertically.
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Adjacency constraints

They can be right below anchors and right above 
junctions.
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Adjacency constraints

And finally, pillars can connect to the ground.

[CLICK] This gives us every label a pillar can be 
adjacent to in every direction. Constraints for other 
labels are extracted the same way.
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Overview

Object and anchors Support structure

Template

Layout

Adjacency 
constraints

The algorithm starts with a voxelized input object 
mainly consisting of object and anchor labels. The 
rest of voxels are either empty or ground. 
Computing the anchors is a relevant but orthogonal 
problem that we do not tackle here.

We then use [CLICK] the template and the adjacency 
constraints to synthesize [CLICK] a support 
structure that properly supports the object while 
avoiding collisions with it.
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Two-phase process

Input object 1st: Support all 
anchors

2nd: Optimize 
structure

O
bs

ta
cle

There are two separate synthesis phases in our 
method. First, [CLICK] we take the input model and 
synthesize a solution supporting every anchor with 
a restricted set of simple structures.

As you can see, we generate supports that avoid the 
obstacle for the middle slab (green), while it 
generates simple vertical pillars for the outer slabs 
instead. This first solution is valid but inefficient, 
and can be improved.

This is the role of the second step, which starts from 
the previous solution and optimizes it by allowing 
the creation of bridges (red) between pillars. This 
makes the structure more robust and material-
efficient.
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Synthesis

initialize model M

U <- unassigned voxels in M

while U is not empty do

choose v in U

choose label in A(v)

M(v) <- label

propagate constraints

end

Merrell, 2007: Model synthesis

I will not go too deeply on the synthesis algorithm 
itself, since it is pretty similar in concept to Model 
Synthesis.

The important elements are highlighted in red. We 
designed specific heuristics to avoid the 
contradictions typical of Model Synthesis.

This is all explained in detail in my dissertation.

70



 

 711e6 voxels in 9s, 341 anchors, 0 CP 2e5 voxels in 1s, 37 anchors, 2 CP

Here are some printed results w/ supports. The stringing 
is a result of slicer optimizations, and does not touch 
the object itself, only the supports.

All objects here have a few 1e5 to a few 1e6 voxels, and 
supports are always generated within 1 to 10 seconds.

Our algorithm occasionally generates new CPs between 
the supports and the object (denoted CPs), where a 
pillar stands on the object instead of the ground. 
These are not intersections, and are easy to remove 
when printed. As you can see, very few new CPs are 
created.

[CLICK] Also note how on the left, the supports go 
through the small hole to support the arch without 
intersecting the object.

71



 

 723e5 voxels in 2s, 347 anchors, 0 CP 7e5 voxels in 4s, 199 anchors, 33 CP

These examples showcase how our algorithm 
performs in tight geometries, where there is little to 
no room for supports.

The knot (right) is significant, since the algorithm 
created 33 new CPs, which is a lot relative to the 
number of anchors. This is due to the three-fold 
rotational symmetry of the shape, which clashes 
with our axis-aligned generation method. Still, 
these CPs are easy to remove, leaving little to no 
traces.
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 731e6 voxels in 9s, 235 anchors, 1 CP

Finally, for the bunny peel model from MeshMixer, we 
printed the supports in a different color. We see 
after removal that the area of contact between the 
object and the supports is pretty small.

We also tested our algorithm on a thousand objects 
from Thingiverse, and the algorithm never 
encountered any contradiction.
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Limitations

● Increased material consumption in some cases

● Support quality depends on object orientation

Our method has some limitations. Compared to the 
previous algorithm, we generate more redundant 
structures and thus may consume more material on 
average (hard to evaluate). This is especially the 
case with long horizontal objects such as the one 
on the left.

(This redundancy allows us to print thinner supports, 
making it hard to compare ourselves to the 
previous method in terms of material efficiency.)

Also, support quality depends on object orientation, 
since we work on a 3D voxel grid. This is rarely a 
problem, since the best orientation is usually easy 
to find. For the object on the right, it is clear that the 
supports will be better if the object is axis-aligned.
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Perspectives

[~40min]

To conclude, let me spend some time talking about 
avenues for future research in the topics I have 
discussed.
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Future work

● Support more diverse inputs
● Rendering on generic surfaces
● New possibilities for electronics design Project page

Let’s start with PCBend.

I said that the displays could have an arbitrary shape, but right 
now, the input mesh provided to the pipeline has to be “nice 
enough” (large enough triangles to fit components in and 
edges long enough to bend). Designing a targeted remeshing 
algorithm to fix problematic inputs, or expanding the range of 
meshes accepted by our system would allow using it for a 
wider variety of applications.

Rendering something on an arbitrary display also poses a 
challenge, since rendering algorithms are not designed for 
this. Right now, lighting effects use the position and 
neighborhood information from LEDs as an input, but a same 
lighting effect shows very differently in different shapes.

Finally, we only worked with LEDs in this project, but foldable 
circuit boards are a generic framework. Being able to design 
low-cost electronic circuits with a complex shape using 
existing fabrication methods opens new doors in electronics 
design in my opinion.
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Procedural support generation

• Proof of infallibility

• Support geometry post-optimization

• Hierarchical approach (complexity: O(n2·k³), n voxels, k labels)

For our procedural supports, a logical extension would be to 
formally prove that indeed the synthesis process always 
succeeds, which we have only verified empirically. I hope that 
this leads to a better understanding of this intricate system, 
allowing it to be generalized to other applications.

Another detail I have glossed over is that the algorithm actually just 
generates a list of horizontal and vertical segments, defined by 
their voxel endpoints. Then, an extra step converts the list of 
segments into actual support geometry. There is a lot of potential 
in optimizing the support structure before generating the 
geometry: by merging redundant structures, converting 
horizontal bridges into diagonal beams, and many more.

Finally, our approach scales linearly with the number of voxels in a 
grid, which is a problem for very large objects. I see potential in 
adopting a hierarchical approach to generation, where 
subregions of the domain are generated independently, while 
making sure that adjacent subdomains generate coherent 
structures.
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Layout problems as a framework

left right

above

below

Interpret as a 
layout problem

Define solutions 
locally

Use properties to 
generate solutions

To conclude, in my opinion, the main contribution of this thesis is 
showing that adopting the layout framework can help breaking 
down a problem and solve it efficiently.

Analyzing structures to derive local properties can be a great 
asset when confronted to a challenging situation. Additionally, 
due to the ubiquity of layout problems across many different 
domains, a huge variety of methods have already been 
successfully implemented for solving them. Drawing on this 
existing state of the art can be very useful when tackling new 
problems.

The main challenge is that there is currently little crossover 
between different fields dealing with layout problems: industrial 
facility layouts, architectural building layouts, electronic circuit 
layouts papers barely reference each other. They deal with 
similar constraints that feel different due to them originating 
from different causes. I feel there is unexploited potential that 
could be tapped into by drawing bridges between these 
different fields.
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Fabrication is messy :)

Finally, I would like to share some insights about 
research in fabrication. The main thing that I have 
learned in the last 4 years is that fabrication is very 
messy. Actually producing functioning objects with 
finicky machines takes a lot of tries. You constantly 
need to take the fabrication process and constraints 
in consideration.

Article deadlines become extra terrifying when you 
take into account unexpected shipping delays, last 
minute electronic failures, or 3D printer malfunctions.

There are many failed and successful design iterations 
for both projects that I was not able to discuss during 
this defense, and I simply wanted to shine a light on 
them by including them here!
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Thank you for your attention!

Questions?

This concludes my presentation. Thank you all for your 
attention. I am happy to answer your questions now.


